Aspergillus detection based on deep learning model using YOLOv8 with a small custom dataset.
Last updated: 29 Mar 2025
10.21608/ejbo.2025.342052.3109
Aspergillus species, Machine Learning, YOLOv8, DenseNet, CSPDarknet53, validation
Hosam
Hassan
M.
Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
hossam@sci.cu.edu.eg
Asmaa
Amir
Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt.
asmaa.amir55@gmail.com
Mohamed
Abd El-Ghany
Naguib Mohamed
Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
dr.mohamed.naguib@gmail.com
Cairo
0000-0003-2306-8510
Said
Salih
A.
Chemistry department, Faculty of Science, Cairo university
said_salih@hotmail.com
Salama
Ouf
A.
Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
saoufeg@yahoo.com
Giza
65
2
54503
2025-03-01
2024-12-05
2025-03-01
211
226
0375-9237
2357-0350
https://ejbo.journals.ekb.eg/article_413262.html
http://journals.ekb.eg?_action=service&article_code=413262
12
Regular issue (Original Article)
111
Journal
Egyptian Journal of Botany
https://ejbo.journals.ekb.eg/
Aspergillus detection based on deep learning model using YOLOv8 with a small custom dataset.
Details
Type
Article
Created At
29 Mar 2025