Enhancing Fraud Detection in Imbalanced Datasets: A Comparative Study of Machine Learning and Deep Learning Algorithms with SMOTE Preprocessing
Last updated: 09 Mar 2025
10.21608/mjcis.2025.313097.1007
Fraud detection, SMOTE, SVM, CNN, LSTMs
Walaa
salem
salah
Information Systems Department, Faculty of Computer & Information Sciences - Mansoura University
walaa79@mans.edu.eg
Mansoura
0009-0009-4281-4903
ibrahim
el- hasnony
Information Systems Department, Faculty of Computer & Information Sciences - Mansoura University
ibrahimhesin2005@mans.edu.eg
mansoura
Ahmed
Abu Elfetouh
Information Systems Department, Faculty of Computer & Information Sciences - Mansoura University
elfetouh@gmail.com
mansoura
Amira
Rezk
Information Systems Department, Faculty of Computer & Information Sciences - Mansoura University
amira_rezk@mans.edu.eg
mansoura
20
1
53821
2025-06-01
2024-09-24
2025-06-01
1
21
2090-1666
2090-1674
https://mjcis.journals.ekb.eg/article_414893.html
http://journals.ekb.eg?_action=service&article_code=414893
414,893
Original Research Articles.
1,784
Journal
Mansoura Journal for Computer and Information Sciences
https://mjcis.journals.ekb.eg/
Enhancing Fraud Detection in Imbalanced Datasets: A Comparative Study of Machine Learning and Deep Learning Algorithms with SMOTE Preprocessing
Details
Type
Article
Created At
09 Mar 2025