هدفت الدراسة الحالية إلى التحقق من تأثير عدد من العوامل الديموغرافية على العلاقة بين إدمان وسائل التواصل الاجتماعي والاتجاهات نحو التطرف، والتحقق من تأثير الاختلافات الثقافية للجنسيات السعودية والمصرية والسودانية، على كل من إدمان وسائل التواصل الاجتماعي والاتجاه نحو التطرف، كما هدفت إلى التحقق من إمكانية استخدام نماذج التعلم الآلي التنبؤ بشكل فعال بالاتجاه نحو التطرف ومعرفة أي من عوامل إدمان وسائل التواصل الاجتماعي الأكثر تنبؤاً بالاتجاه نحو التطرف، وأخيراً معرفة أكثر أساليب التعلم الآلي مناسبة من حيث قدرته على وضع نموذج والتنبؤ بالعلاقة بين إدمان وسائل التواصل الاجتماعي والاتجاه نحو التطرف، وقد تكونت عينة الدراسة من (352) طالبًا (123 من الذكور، 229 من الإناث)، بمتوسط عمر (20,1) عاماً وانحراف معياري (0,99)، وقد اشتملت أدوات الدراسة على مقياس إدمان وسائل التواصل الاجتماعي إعداد شانواز وريحمان (Shahnawaz & Rehman, 2020) ترجمه وأعده للعربية الباحثان الحاليان، ومقياس الاتجاه نحو التطرف من إعداد أوزر وبيرتيلسين (Ozer & Bertelsen, 2018)، ترجمه وأعده للعربية الباحثان الحاليان، وخلصت الدراسة إلى مجموعة من النتائج وهي: أبرزت التحليلات الديموغرافية وجود فروق في أداء النماذج على أساس نوع الجنس والتخصص الدراسي، كما أظهرت التحليلات الإحصائية فيما يخص التصنيف على أساس الجنسية تأثير العوامل الثقافية، بمستويات متفاوتة من الدقة بين المشاركين السعوديين والمصريين والسودانيين، كما كشف تحليل Random Forest عن الدور المحوري لعوامل الإدمان في التنبؤ بالاتجاه نحو التطرف بين طلاب الجامعات، ومن الجدير بالذكر أن عوامل مثل الانتكاس والصراع الناجم عن إدمان وسائل التواصل الاجتماعي ظهرت كمنبئات مؤثرة للغاية، ووجد أن عوامل التحمل والبروز والانسحاب وتعديل المزاج يساهم بشكل كبير في التنبؤ بالاتجاه نحو التطرف، أيضا كشف التحليل باستخدام نماذج SVM وANN عن صورة واضحة حول القدرات التنبؤية لإدمان وسائل التواصل الاجتماعي والمتغيرات الديموغرافية بالاتجاه نحو التطرف، وفي حين أظهر كلا النموذجين دقة معقولة، أظهر نموذج ANN أداءً أفضل قليلاً، مما يسلط الضوء على قدرته على التقاط أنماط معقدة في البيانات.