Beta
257923

Production of Bio-ethanol from sugar beet pulp using recombinant E. coli and S. cereviceae

Article

Last updated: 05 Jan 2025

Subjects

-

Tags

Renewable energy in sugar industry
Utilization of sugar industry wastes

Abstract

Ethanol is one of the most important biofuels that can be produced from different renewable sources. Sugar beet pulp (SBP) is used as renewable and cheap raw material for ethanol production. SBP is the by-product of the sugar industry from sugar beet that is used as animal feed after processing (pressing, dehydration, and pelletizing). Ethanol from SBP will be more profitable value than the other uses as animal feed. The two highest cellulases producer isolates S11 and S88 from the previous work were subjected to DNA identification using the 16S rRNA gene. 16S rRNA is tool used to identify the origin, classification, evolutionary and relationship history. The isolates S11 (Streptomyces sp. strain FDZH12) and S88 (Streptococcus mitis strain FDZH16) had been submitted to EMBL and their accession numbers are OK033363 and OK033364, respectively. Cellulase gene from S11 Streptomyces FDZH12 then cloned into E.coli to produce superior strain for cellulases production.The recombinant E. coli was confirmed by colony PCR using gene-specific primers of cellulases. Ethanol production from SBP is achieved through three steps: first, acid-base treatment for SBP and then the resulting cellulose content hydrolyzed to fermentable sugar using genetically engineered E.coli cloned by cellulases enzyme. Finally, the fermentable sugar is fermented to ethanol using S.cereviciae FDZH2O The weight of dried SBP after acid-base treatment was 45.5 % of the original dried SBP. Cellulose contents of untreated SBP were 27.95 % and reached 84.22 % after acid-base treatment (842.2g/kg). The maximum yields of glucose by the recombinant E.coli after 24 hours of saccharification of treated SBP were 28.36 g/50 g of acid base treated SBP (67.52% of their cellulose content). _______________________________________ 1* Botany and Microbiology Department, Faculty of Science, Assiut University, Egypt. 2 Microbiology Department, Faculty of Science, Zagazig University, Egypt. 3 Plant Protection and Biomolecular diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technology Applications, Alexandria, Egypt. 4Faculty of Sugar and Integrated Industries Technology, Assiut University, Egypt *Corresponding author: Zohriassiut@yahoo.com Each 100 ml saccharified solution has 5.672 g glucose. After fermentation, each 100 ml saccharified solution has 2.83 ethanol (0.5008 g/g sugar 98% of the theoretical value). The maximum yield of ethanol by S. cerevisiae FDZH2O (equal to 14.20 g ethanol / 50 g of hydrolyzed SBP which have 42.11 g cellulose) and achieved at pH 6, 30 ºC, and 10% inoculum size after 72 hours of fermentation. According to the mass balance in our study each 6.557 kg, wet beet pulp with the moisture of 86% produces 1 kg dried SBP (DSBP) with moisture of 7.92% then after acid-base treatment produces 455 g treated DSBP that saccharified by recombinant E. coli into 258 g glucose and fermented finally by S. Cerevisiae into 129.24 g ethanol. This level is relatively low and more experiments are still needed to increase the productivity of this bioprocess.

DOI

10.21608/esugj.2022.152681.1016

Keywords

sugar beet pulp, saccharification, Saccharomyces cerevisiae, FDZH2O, gene cloning

Authors

First Name

Abd El-Naser

Last Name

Zohri

MiddleName

A.

Affiliation

Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt

Email

zohriassiut@yahoo.com

City

Assiut

Orcid

-

First Name

Gamal

Last Name

Mohamed

MiddleName

E.

Affiliation

Microbiology Department, Faculty of Science, Zagazig University, Egypt

Email

eldidamonyg@gmail.com

City

zagazig

Orcid

-

First Name

Elsayed

Last Name

Hafez

MiddleName

-

Affiliation

Plant Protection and Biomolecular diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technology Applications, Alexandria, Egypt

Email

elsayed_hafez@yahoo.com

City

New Borg El Arab City

Orcid

0000-0003-4044-5103

First Name

Fahmy

Last Name

Fahmy

MiddleName

Hamdy

Affiliation

Faculty of Sugar and Integrated Industries Technology, Assiut University, Egypt

Email

fahmyhamdy2010@yahoo.com

City

-

Orcid

-

Volume

18

Article Issue

0

Related Issue

31473

Issue Date

2022-06-01

Receive Date

2022-07-17

Publish Date

2022-09-05

Page Start

68

Page End

77

Print ISSN

2636-2694

Online ISSN

2636-283X

Link

https://esugj.journals.ekb.eg/article_257923.html

Detail API

https://esugj.journals.ekb.eg/service?article_code=257923

Order

257,923

Type

Original Research Articles.

Type Code

2,178

Publication Type

Journal

Publication Title

Egyptian Sugar Journal

Publication Link

https://esugj.journals.ekb.eg/

MainTitle

Production of Bio-ethanol from sugar beet pulp using recombinant E. coli and S. cereviceae

Details

Type

Article

Created At

23 Jan 2023