Beta
244264

Robust Estimation Methods in Random Intercept Model: A Comparative Study

Article

Last updated: 28 Dec 2024

Subjects

-

Tags

-

Abstract

Random Intercept regression models  are used in modeling grouped data where the observations  are  correlated in each group. This paper present a comperative sinulation study between parametric and two robust estimation methods to assess the influence of the violation of the normality of the error distribution on the efficiency of the model peremeter estimates. The asymptotic relative efficiency is used under various factors including the number of groups, the group size and the intercalss correlation coefficient. The methos under consideration are applied to data on the faculty of social work's math-achievement at helwan university.

DOI

10.21608/esju.2018.244264

Keywords

Random Intercept regression model , restriced maximum likelihood estimation methos, robust estimation methods

Volume

62

Article Issue

1

Related Issue

35029

Issue Date

2018-06-01

Receive Date

2022-06-15

Publish Date

2018-06-01

Page Start

70

Page End

92

Print ISSN

0542-1748

Online ISSN

2786-0086

Link

https://esju.journals.ekb.eg/article_244264.html

Detail API

https://esju.journals.ekb.eg/service?article_code=244264

Order

5

Type

Original Article

Type Code

1,914

Publication Type

Journal

Publication Title

The Egyptian Statistical Journal

Publication Link

https://esju.journals.ekb.eg/

MainTitle

Robust Estimation Methods in Random Intercept Model: A Comparative Study

Details

Type

Article

Created At

23 Jan 2023