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Abstract

Random intercept regression models are used in modeling grouped data where the observations
are correlated in each group. This paper presents a comparative simulation study between
parametric and two robust estimation methods to assess the influence of the violation of the
normality of the error distributions on the efficiency of the model parameter estimates. The
asymptotic relative efficiency is used under various factors including the number of groups, the
group size and the interclass correlation coefficient. The methods under consideration are applied
to data on the faculty ol social work's math-achievement at Helwan University.

Keywords: random intercept regression model; restricted maximum likelihood estimation
method: robust estimation methods.

Abbreviations: ML: Maximum Likelihood; REML: Restricted Maximum Likelihood: 1.S: Least
Squares; GLS: Generalized Least Squares; MINQUE: Minimum Norm Quadratic Estimation;
JR: Robust Joint-Rank; RP: Robust Parametric; ARE: Asymptotic Relative Efficiency; 1CC:
Intraclass Correlation Coefficient; MSE: Mean Squared Errors; NG: Number of Groups; GS:
Group Size; Q-Q: Quantile-Quantile plot.

Introduction

The random intercept regression model is necessary to handle clustered or grouped data. The
parameters to be estimated in this model are the fixed coefficients that represent the fixed part of
the model and the variances components. In order to estimate unknown parameters, several
parametric procedures are well known in literature, bul the commonly used methods are
maximum likelihood (ML) and restricled maximum likelihood (REML) (Hox, 2002).

A fundamental assumption for tests of significance is normality of the error components
distributions involved. However, as any real-lifc data, data modeled by random intercept
regression model might contain ocutliers, or any other contamination. Even small departures can
drive the classic estimates far away {rom what they would be without the contamination. Robust
estimation methods aim to solve these types of problems to provide estimates where
contamination has only little influence. A simulation study by Mass and Hox (2003) shows that
the non-normality distribution for the residuals at the group level leads to biased estimates of the
group level standard errors. That the standard errors of the variances for the group level residuals
are highly inaccurate; however the robust estimates do better performance than REML estimates.
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Depending on robust rank-based analysis, Mckean et al. (200:) investigated the robust approach
introduced by Hettmansperger and Mckean (1978) for linear regression models. The study
compared the asymplotic relative efficiency (ARE), as a principal comparison measure, ol the
robust rank-based estimation method and least square ([.S) estimators in terms of their
asymptotic variances. The authors concluded that, under normality the robust estimator losses
4.5% in efficiency since it provides 95.5% as efficient as LS estimators. However. the ARE is
usually greater than 1 if the true distribution has tails heavier than those under a normal
distribution, when errors have contaminated normal distributions or the data are corrupted by
outliers.

Under lincar mixed models, which represent the general representation of random intercept
regression models, Kloke et al. (2009) extended the robust approach from simple linear models
to linear mixed models with covariates using general score functions. The authors compared
between the LS and robust rank-based estimation method using Wilcoxon score function by
ARE as an assessment measure and they concluded that the robust analysis is more efficient than
LS in the presence of outliers.

Besides, Mckean and Kloke (2014) proposed a family of optimal score functions under
contaminated normal distributions of the error terms in both linear and nonlinear models. In this
study, they compared robust rank-based estimators with LS and ML estimation methods in terms
of their asymptotic variances by using the ARE to conclude about the efficiency and validity of
robust rank-based method over skewed normal and symmetric contaminated normal
distributions. Mckean and Kloke (2014) illustrated how to apply robust non-parametric statistical
methods in linear, nonlinear and mixed regression models using the R-package.

Furthermore, Auda et al. (2018) provided a simulation study to compare between the REML and
the robust rank-based procedure denoted by joint-rank (JR) under different situations of error
distributions including normality, contaminated normal distribution, skewed contaminated
normal distribution and when data corrupted by two types of outliers. The study concluded that
the JR fit is more efficient and powerful than REML under all non-normal cases. However, it
loses little of its power and efficiency in normal errors.

[n this paper we extend the investigation simulation study produced by Auda et al. (2018) (o
cover another robust estimation method beside JR called robust parametric (RP) method.
Accordingly, we organize the rest of this paper as follows. In Section 2, we describe the random
tntercept regression model. In section 3, we discuss the REML and robust estimation methods for
random intercept regression madel. In Section 4, we offer a simulation study that confirms the
validity of our analysis (robustness of parameter estimates) under different situations of etror
distributions and the results of the study are presented in Section 5. In Section 6, we examine a
real dataset obtained from the faculty of Social Work that contains several outliers and violate
normality assumption; where the traditional REML analysis is sensitive to Lhese outliers,
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whereas the other rank-based methods are robust. And finally in Section 7 we discuss the issues
raised by the results of this study and draw some conclusions about this analysis.

1. Random Intercept Regression Model

Assume that we have data from m groups, with a different number of respondents n; , where j =
L2,,...,mandn = Y71, n;. Then the data can be modeled using random intercept regression
model as

Yj, = a’lnj +Xjﬁ + (5}'1,” + Ef s j = 1,2,,...,?’?’1 [1]
where Y; is n; X 1 vector of response variables, X; is n; X p design matrix of explanatory

variables, a 1s the intercept parameter, f is p X 1 vector of regression coefficient of fixed

j
vector of length n; representing the residuals on the same group level. [t is further assumed that

effects, 6; represents the random effect of group j where 1’1, is n; vector of ones and g; is a

By~ N(0,08) and is uncorrelated with g; such thal & ~ N(0, 0, 1:1,)- The previous model can

also reformulated as
Y]:Cflni‘i'xjﬁ'{" B',- ,j:l,Z,,...,m lZ]

where e; = 5;1,11_ + ¢&; represents the vector of all random errors in group j. Combining model

[1] for all groups yields
Y =al, +XpB+61,+e = al,+XpB+e (3]

where ¥ = (Y7, .., ¥YT)T is n x 1 vector of responses, X = (XT,...,XT)7 is n x p the design
matrix of explanatory variables. Because an intercept parameter is in the model, we assume that
X is centered and has full column rank. € = (e], ..., €7)7 is n x 1 vector of residual errors, §
ism x 1 vector of random effects and §~N(0,0¢1,, ), where 1,, is n X n matrix of ones. So
under normality of residual errors, the response variable has normal distribution with
mean (a1, + X ) and variance covariance matrix £y, that

Ly =051+ ol Iy [4])

Because of the hierarchical structure of the multilevel data in random intercept regression
models, the observations violate the assumption of independence within groups. The amount of
dependence can be measured using intraclass correlation coefficient (ICC) which can be
expressed under random intercept models as follows,

ICC = p = (o5/(0§ +02)) = 05 /0? (5]

where 02 = g + g , then we can reformulate [4] according to [5] as follows:
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In the next section, we present a parametric and two robust estimation methods that will be used
in the simulation study.

2. Estimation Methods

Once the model has been formulated, methods are needed to estimate the model parameters.
Several estimation methods, as generalized least square (GLS) and Henderson's mixed model
equations (Henderson, 1950), have been produced for estimating fixed and random effects
simultancously. These methods assume that the variance components of the model parameters
are known, however in practice they are usually unknown.

[n order to estimate unknown parameters, namely the fixed effects and the variance components,
several procedures for variance parameter estimation are discussed in Searle et al. (1992). These
methods include the ANOVA method for balanced data which uses the expected mean squares
approach. On the other hand, Rao (1971) proposed the minimum norm quadratic estimation
(MINQUE) for estimating variance parameters in case of unbalanced data. However, for both
balanced and unbalanced data we can use maximum likelihood ML and restricted maximum
likelihood REML estimation methods a. Below we will describe REML as a parametric method
for estimate variance parameters.

Restricted Maximum Likelihood

ML and REML are common estimation methods for estimating fixed effects parameters, as wel|
as estimaling the unknown variance components. ML estimators of the variance parameters are
always biased because they do not take into account the degrees of freedom lost in the estimation
of the fixed effects (Lin and Allister, 1984; Swallow et al, 1984). This problem can be overcome
by REML (Anderson, 1952; Patterson, 1971) since it takes into account the degrees of freedom
lost in estimating the fixed effects. Hence we depend on REML estimation of the variance
parameters instead of ML estimation. REML estimation includes no procedure for estimating
fixed effects. However, maximum likelihood estimation of fixed effects parameters are achieved
by replacing variance components by their REML estimates.

An important assumption underlying REML estimation method is the normality of the error
distributions. When the residual errors are not normally distributed, the parameler estimales
produced by REML are asymptotically unbiased. However, the asymptotic standard errors are
incorrect and significance tests and confidence intervals using those standard errors cannot be
trusted (Goldstein, 2010). This problem does not completely vanish when the sample gets larger.
Accordingly, we discuss two of robust estimation methods called robust parametric (RP) fit and
joint rank-based JR fit Kloke et al. (2009).
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Robust Rank-Based Estimation Method

Rank-based fitting of linear models offers an alternative estimation method (o least squares and
maximum likelihood estimation methods. These methods (rank-based) need the selection of a
score function @ (w). If the form of the underlying error distribution is known, we can obtain an
optimal score function which minimizes the variance of the estimator. For example, if the error
distribution is normal, then the optimal score function is the normal scores which defined
as; Pps(u) = @7 1(u) , where ®(u) denotes the standard normal cumulative distribution

function, while Laplace distributed errors produces the sign scorcs(rpsg”(u) =sgn (u - 1/2)).
However, if there is little or no information about the error distribution, then Wilcoxon score

function is used ( P(u) = V12 (u—1/2)and0 < u < 1).

The geometry of rank-based fit is sumilar to that of least squares estimation methods in linear
rearession models. Since we replace Euclidean-norm by the pseudo-norm as

“C“qi = ?=1Q(R(Ci)) Ci , CeR" (7]

where the scores are generated as a(i) = @(i/(n + 1) where @(u) is defined as non-decreasing

square-integrable score function defined on the interval (0, 1), where, without loss of generality,
: 1 1 s
standardize as [ @(u)du = 0 and Iy @*(u)du = 1, and R(c;) represents the rank of ¢; among

€1, Cav s €. Then we can define the rank-based estimate of fixed coefficient parameters f§ as
follows

B, = Argmin e IV — XBll, (8]
then the asymptotic distribution of the rank based estimator is given by
f}q,~N([)’, ré,(XTX)’L) y o Ty = (f(p(11)(pf(u)du) ==k

» ‘ f'(Fnl(u)) . )
where @(u) is the score function and @ (u) = =Tk [he 7, is the scale parameter of

random error term that under the Wilcoxon scores we can simplily the scale parameter T, t0]

Ty = Ty = [VIZJ F2(0dt] (9]
= [2 F™ (10

where T, is the scale parameter of the estimate of intercept parameter @, which defined as the
location estimate based on the residuals. For LS, the arithmetic mean is used while for the rank-

based estimates the median is used (c’fs = med <jen (yi - x?ﬁ,{,)).
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Based on the previous rank-based regression methodology, Kloke et al. (2009) extend it to
include random effects in mixed models. In this section we introduce joint rank-based estimation
method.

Robust Joint Ranking Method

This rank-based analysis has been extended for nested mixed models by Kloke et al. (2009)y, A
full development of the rank-based analysis can be found in Chapters 3-5 of the monograph by
Hettmansperger and McKean (2011). The idea of this method is to fit fixed effects of the model
al first then the variance-covariance of the rank-based fit and the variance components are
robustly estimated based on the residuals of the fixed effects fit (Kloke et al., 2009 and Auda «f
al.,2018).

By following the algorithm of rank-based estimation method as shown in Kloke el al (2009), we
first find the estimation of fixed effects in the JR method using the dispersion function as in the
independent lincar model (see [8]) and their variances as appear in [9] and [10], so the

asymptotic distribution of 8, is normal with mean 8 and covariance matrix Vi which is defined

in general mixed models as:
Vy, = rg,(xf"xri(z;ﬂ:lng(p‘,xf)(x'f'x)"l [11]

where 3, ; = cov ((,0 (F(el,-))) and F(e‘;) denotes the distribution function of errors. Then, as
linear models, once B (s estimated, we estimate the intercept a as the median of the residuals
that, @ = med;;(y;; — x[;B,). Letting 7, = L/2f(0) (see [10]), &; is asymptotically normal
with mean & and variance
2 _ 21 ft; 7 iz
a; = 1f - e [Zi:jl var (sgn(eu)) + Yigi COV (sgn(e”),sgn(e”)) J [12]
Also to conduct inference, we need an estimate of the covariance matrix of Eq,. And as we said

in the previous section, we robustly estimate the variance-covariance of the rank-based fit and
the variance components based on the residuals of the fixed effects, then by define the residuals
of the JR fit we obtain

é[R:Y'—ﬁsln_XﬁqJ [l?}

Using these residuals, we can estimate the parameter 7, and t; by their estimalors as proposed
by Koul et al. (1987). Next, a nonparametric estimate of 2.pj 15 obtained by replacing the

distribution function F(ei-) by the empirical distribution function of the residuals,

However, for the simulation study in this paper depended on random intercept regression model
-

as defined in [3] which represents a special case of linear mixed models. So the asymptotic
variance-covariance matrix defined in [11] can be simplified as
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vq) == Tr?J(XTX)Al(Z;"ilX}FZ(;),,EX[)(XI‘X)_I ’ Z(p,j :EY:-: Uz[pcpln i (1 - p(p)lul [14‘]

as defined in [6] for group j, and the intraclass correlation coefficient for each two residuals

defined as; p, = COV {o(F(ey)). p(Fles))} = E[cp(ﬁ'(en)),r,r)(F(ezl_))}. Similarly, for the
asymptotic variance of the intercept in [12] can simplify at

o =ti= (L+n'p;) (15]

for p; defined for each two residuals defined as; ps = cov {sgn(ey;).sgney)} and n* =

n _ _
ot :,’Llrlj(nli —1). Let M = }’f__l( ’) — p, then the simple moment estimators of p,, and P

2
are
Py = M~ ?1:1Zf>ia[R(éU)}a[R(éii)l [16]
ps =M1 %=1 Yisi SQH(éu) sgn (éij) (17]

Plugging this into [14] and using the estimate of 7, discussed in previous section, we have an

estimate of the asymptotic covariance matrix of the JR estimators.
Robust Parametric method

Robust parametric RP method is based on huberization of likelihood estimation method (Koller,
2016); it is depend on the random effects contamination model. The estimation method does not
make any assumption on the data’s grouping structure except that the model parameters are
estimable and it supports hierarchical and non-hicrarchical grouping structures. The robustness
of the estimates and their asymptotic efficiency is fully controlled through the function interface.
Individual parts (fixed effects and variance components) can be tuned independently. A full
development for how to fit robust linear mixed-effects models using RP can be found in Koller
(2016).

3. Simulation Design and Procedure

The purpose of this paper is to provide a comparative simulation study to investigate the
performance of specific parametric and robust estimation methods based on the accuracy of the
parameter estimates and their standard errors when some fundamental assumptions are violated.

We use a simple two-level random intercept regression model with one explanatory vanable at
the individual level, conforming to the following combined equation:

yij = a + X+ 8 + & (18]

that the first part (0{ + ﬁlx”) in [18] contains fixed coefficients; it is the fixed part of the model.

For (6}- + 5:‘;‘) in [18] contains random error terms; it is the random part of the model. The
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performance is investicated under the following factors: (1) Number of groups, (2) Group size
and (3) Interclass correlation coefficient.

A former simulation study of Van der Leeden et al. (1997) showed that a large number of aroups
is more important (or the efficiency of the parameter estimates than the large number of
individuals per groups, so that the highest number of groups should be sufficient. Furthermore,
the simwulation in Mass and Hox (2003) showed ouly a small sample size at the group level leads
to biased estimates of the group-level standard errors. According to that three conditions of
number of groups (NG) are varied (NG =10, 20 and 30).

Similarly, for the factor of group size (GS), three sizes are used in the simulation (GS =5, 10 and
15). The group sizes are chosen so that the highest number should be sufficient.

A recent simulation study of Auda et al. (2018) suggests that the size of intraclass correlation
coefficient ICC also affects the accuracy of the parameter estimates and their standard EITors.
Actually, what is at issue in multilevel modeling (in general) is not so much the ICC, but the
design effect, which indicates how much the standard errors are underestimated (Kish, 1965). In
group data, the design effect is approximately equal to | + (average group size — 1) * ICC. Thus,
the values for the ICC and group size are determined to make the design effect larger than two.
Three values of [CC are used (0.1,0.2 and 0.3).

For each condition, we generate 1000 simulated data sets, assuming normally distributed
residuals. The model assumes that the explanatory variables are fixed in repeated samples, and
are randomly generated from uniform distribution. The regression coefficients values are 1.00 for
the intercept and 0.3 for the slope. Different combinations of g and o have been chosen such
that according to [5] the resulting ICC becomes 0. [, 0.2 and 0.3 respectively.

In the next section, we summarize the results of empirical AREs and the relative bias of the
parameter estimates in many situations: the standard case of normal eITors, symmetric
contaminated normal errors with three levels of contamination (10%, 20% and 30%) and the
ratio of the contaminated standard deviation to uncontaminated standard deviation was sel at 10,
skewed contaminated normal distribution with also three levels of contamination (10%, 20% and
30%) and skewnees parameter set at 10, and finally we investigate the influence of outliers on
the parameter estimates and the model efficiency. For last situation, we corrupted the normal
errors with two-types of outliers as follows: first we replaced 5% of the random errors with those
drawn from the normal distribution with mean 10 and variance 152, and then replaced random
effects that belong to a specific group with random errors drawn from the normal distribution
with mean 10 and variance 152.

For each case of previous we compared REML, RP and JR estimation methods using the R
statistical package. The function lme r from the Ime 4 package (Bates et al., 2015) is used to run
REML analysis since it doesn’t make assumption on grouping structure and efficiently deals
with correlated and uncorrelated random effects within levels, However, we use the function
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rlmer to compute the RP analysis. Finally, we use jrf it function from jrfit package to
compute JR analysis based on Wilcoxon score functions Kloke et al. (2009).

4. Results

[n order to assess the importance of the normality assumption of the error distributions volved
in the model, the section is divided into two parts. In first part; the accuracy of the parameter
estimate are investigated using the average bias, and then in the second part, efficient of the
model has been investigated using asymptotic relative efficiency.

Average Bias

The relative bias is calculated for across all cases discussed in the previous section, and we
calculated it as follows; for each case of situations we gencrale 1000 simulated data sets and
defined the average bias as follows:

e b 000 A .
Average bias = —— ¥i2) (E(0) —8) (19]
where @ denote the population parameter and @ is the parameter estimate.

The results showed that, for normal and contamination situations presented in Tables (1, 2 and 3)
are nearly to zero and almost the same for REML, RP and JR estimators. Also it is unportant to
say that we obtain the lowest values of bias for the parameter estimate by using robust JR
approach in contamination situation as appeared in both Tables (2 and 3).

Table (1): Bias for fixed effect estimator (Slope) with normal errors

Number Group sizes |
1CC of 5 L0 15
aroups | REML RP JR REML RP JR REML RP JR
| L0 0.0497 | 00517 | 0.0473 | 0.007 0.013 0.017 | 0.031 | 00285 | 0.0353
0.1 20 0.0028 | 0.0062 | 0.0075 | 0.0031 | 0.0037 | 0.0015 | 0.0203 | 0.0204 0.026
30 00321 | 0.0252 | 0.0377 | 0.0315 | 0.0378 | 0.0388 | 0.0199 | 0.0227 | 0.0237
10 0.0551 | 0.0576 | 0.0393 | 0.0075 | 0.012 | 0.0207 | 0.0294 | 0.0269 | 0.038
0.2 20 0.0039 | 0.0059 | 0.0029 | 0.0017 | 0.0027 | 0.0011 | 0.0175 | 0.0163 | 0.0253
30 00174 | 00154 | 0.0303 | 00189 | 0.0219 | 0.0238 | 0.0115 | 00127 | 0.0161
10 00568 | 0.0581 | 0.0386 | 0.0065 | 0.0111 | 0.0217 | 0.0273 | 0.0252 | 0.0416
0.3 20 0.0047 | 0.0073 | 0.0028 | 0.0014 | 0.0025 | 0.0010 | 0.0176 | 0.0163 | 0.0278
30 00138 | 00129 | 0.0329 | 0.0177 | 0.0201 | 0.0237 0.0106 | 0.0117 | 0.0161
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Table (2): Bias for lixed cffect estimator (Stope) with cont

aminated normal error

Number | I rm—ip sizes o T
Level of of [ 5 W 13 ]
Contamination | groups | REML RP JR REMIL, | RP JR REML W‘Ji{
10 0083 | 0.051 | 0.038 | 0.056 | 0.0233 | 0.0231 | 0,056 | 0.025 | 0.018
10% 20 0.054 | 0.034 | 0.023 | 0.0274 | 00012 | 0.0003 | 0.006 | 0.002 | 0.007 |
30 0.078 | 0.025 | 0.018 | 0.0052 | 0.0053 | 0.0026 | 0.043 | 0.0078 | 0.007¢
(0 0.08 0.06 0.04 | 0.001 | 0033 | 0027 | 0.076 | 0.043 | 0.0
20% 20 0.0014 | 0.0252 | 0.0271 | 0.034 | 0.003 |9.56-05| 0.05 | 0018 | 0.007 |
30 0.076 | 0.041 | 0.027 | 0.05 | 003 0.007 | 0021 | 0.009 | 0.004 |
[0 0.047 | 0.078 | 0.043 | 0.013 | 0044 | 0035 | 009 | 0051 0.036
30% 20 | 0.016 | 0037 | 0.035 | 005 | 0012 | 0.009 0.062 | 0.01 | o0.01
30 | 009 | 0065 | 0.035 | 0.060 | 0019 | 00Lo8 0.008 | 0.011 ‘0.0"6"5:
Table (3): Bias for fixed cffect estimator (Slope) with skewed contaminated normal error
N Number Group sizes B ]
Level of of 5 10 15
Contamination | groups | REML | RP JR | REML | RP JR | REML| ®RP | Jr |
- 1o 0.016 | 0021 | 0.0021 | 0.0092 | 0.0006 | 0.0092 | 0.009 | 0.0015 | 0.000¢ |
10% 20 | 0.008 | 0.001 | 0.0091 | 0012 0.0064 | 0.0053 | 0.031 | 0.0074 | 0.0014
30 0.01 | 0.003a | 0.0006 | 0.023 | 0003 0.0014 | 0.009 | 0.007 | 0.004
10 | 004 | 0038 | 0018 | 0021 | 0019 0.015 | 0.0296 | 0.0219 | 0.002
20% 20 0.026 | 0.0029 | 0.015 | 0.0067 | 0.0048 | 0.0012 | 0.037 0.0135 | 0.006
30 0.025 | 0.001 | 0002 | 0.037 | 0.016 | 0.006 | 0.019 | 0.0031 | 0.0035
10 0.08 | 0.068 | 0.03 0.025 | 0.001 | 0.007 | 0.031 | 0.009 | 0.000
30% 20 | 002 | 0014 | 0007 | 00D 0.004 | 0.007 | 0.0195 | 0.024 | 0.008
30 0.034 | 0021 | 0.0004 | 0.019 | 0.010 | 0.008 | 0.033 | 0.008 | 0.002

Although when the data corrupted by outliers, the bias results b
parameler estimates far away from what it would be without outliers. In Table
the bias results for Type-one outliers: where 5% of random errors repl

drawn from the normal distribution with mean 10 and variance152

the performance of robust estimation methods is better than the performance of REML

factors (the number of groups,

sample sizes and an [CC = 0.1.

(4) we

egin to differ from zero and the

presented

aced with random errors
, and the results showed that

across all

group sizes and interclass correlation coefficients). In addition, by

comparing the two approaches of robust estimation methods, JR approach appears to give the

better performance with a little difference than RP approach in the worst conditions with small
P Pl
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Table (4): Bias for fixed effect estimator (Slope) with data corrupted by Type-one outliers

mﬁj— Group sizes 3
1C¢ of | 5 10 1 15 T
croups | REML | RP JR | REML RP r JR i REML | RP R
10 0657 | 0112 | 0079 | 0448 | 0098 | 0.076 0.47 | o001 0.005 |
0.1 20 0.469 0.0896 | 0.0894 | 0.721 0.169 0.152 0.722 0149 | 0.131 |
30 | 0056 | 0023 | 0023 | 0732 | 0.158 | 0.158 0397 | 0.089 0'0327
10 0.696 | 0.133 0.01 0.44 0.101 0.095 | 0.064 0.017 | 0.0098 |
0.2 20 0.432 | 0.079 | 0.111 | 0.734 0.176 0.174 | 0.755 0.157 0.147 |
30 | 0078 | 0028 | 0022 | 0734 | 0.163 | 0175 | 0427 | 0.098 0.092 |
10 0.74 0.163 | 0.119 | 0.426 0.101 0.108 | 0.083 0.019 0.013 |
0.3 20 0.382 0.07 0.126 0.745 0.178 0.191 0.78 0.17 0.158 ‘
30 | 0103 | 0044 | 0.021 0.736 0.162 £0_191 0.45 0.101 0.100 J‘
Table (3): Bias for fixed cffect estimator (Slope) with data corrupted by Type-two outliers
Number Group sizes
i of | 5 10 15
aroups | REML RP JR | REML | RP JR REML RP JR
10 0901 | 0.158 | 0.0a1 | 1.065 | 0.199 0.099 1.00 0.193 0.142
0.1 20 | 0478 0.033 0.019 0.48 0.032 0.024 0.464 0.020 | 0.0498 |
T30 | 0.286 | 0016 | 0035 | 0301 | 0026 0.025 | 0364 | 0.016 | 0.045 ;
10 0.897 | 0.169 | 0.038 | 1.06 0.211 0.128 1006 | 0.212 0.174 |
0.2 | 20 0474 | 0042 | 0021 | 0475 | 0038 | 0.027 %0.46 | 0.026 0.055
30 0.287 | 0.023 | 0043 | 0.299 0.031 0.025 | 0359 | 0.021 | 0.048
10 J 0.895 | 0.184 | 0.035 | 1.06 0.225 0.140 ] 101 | 0232 | o201
0.3 20 | 0472 | 0050 | 0.017 | 0.471 | 0.045 0.023 | 0456 . 0.033 | 0.055
L F 30 0.29 0.031 | 0.055 [ 0.296 | 0.037 To.oao | 0.355 | 0.027 | 0.049

Also, the same conclusion is obtained in Table (5) for the data corrupted by Type-two outliers
(where 5% of random effects replaced with random effects drawn from the normal distribution
with mean 10 and variance15%) that the worst estimation results with biggest vales of bias are
obtained by using REML, however the almost the same accurate results are obtained by using the
other two robust estimation methods with prefer to JR approach results especially in small
sample sizes with 5 and 10 observations per group. For all previous situations we have a general
conclusion that the average of empirical bias decreases as the sample size and ICC increase.

Actually, the results show that non-normal errors of the random intercept regression model have
a little or no effects on the parameter estimates since we focus on investigating the parameler
estimates involved in the fixed part of the model and not their standard errors or variance
components. So lo assess the accuracy of the model efficiency with respect to its variance, we
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compare between the different estimation methods using the
AREs in terms of the asymplotic variances as pres

Asymptotic Relative Efficiency

To compare between estimation methods presented
efficiency ARE is used since it defined
calculated it as follows; for each situation we generate 000 simulated d
between every two different estimation methods

errors(MSE ) as follows:

ARE = MSE,/MSE;

asymptotic relative efficiencies

ented 1n next section.

, T EF

in this paper the asymptotic relative
as one of the principal comparison measures. And we
ata sets and defined ARE
as the ratio of their asymptotic mean square

[20]

. 1 = 2 = - :
where MSE, = —— 71000 ((Qn- -8) ) represent the mean square error for r estimation

method, 6 denote the population parameter and 8,; is the p
method on the ith simulation data set. So if ARE is less than 1,

1000

estimation method are more efficient than estimators given by ¥

have three va

arameter estumate using r estimation
then the estimators given by r

and vice versa. In this paper, we
lues of ARE in each case study that compare between REML, RP and JR as
follows; ARE(1) = MSEgpp/MSEpp . ARE(2) = MSErppm, /MSER and ARE(3) =

MSEgp/MSE,q .
Table (6): Asymptomatic relative efficiency for normal crrors L o
Number Group sizes 1
ICC of 3 [0 13
groups | ARE(D) | ARE(2) | AREQ3) | ARE(I) | ARE(2) | ARE() ARE(l) | ARE(2) | ARE(3) |
10 | 096 | o097 1.01 0.977 099 | 102 0.981 098 | 0999 |
0.1 [ 290 0.977 | 0938 0.96 0989 | 0987 | 1.0% | 0993 | 097 | 0977 |
30 0979 | 0921 0.94 0.987 | 0984 | 0998 | 0.927 095 | 1.03
10 0962 | 0943 1.04 0.977 | 1001 1.02 0971 | 0998 | 1078
0.2 20 0.997 0.95 0.953 | 0.986 0.99 1.004 | 0984 | 098 | 099
30 0.983 094 | 095 | 0987 0.98 0992 | 0.992 09 | 0968 |
| 10 | oo 0.98 1.02 0.924 | 1.002 | 1.084 | 0965 099 | 1.026 |
0.3 20 0981 | 0964 | 0.983 | 0984 | 0995 | 1011 | o984 | 0987 | 1003
30 0.98 0.964 | 0.985 | 0.986 099 | 1.004 0.989 0.97 0.981

where ARE(1) = MSEpgn,/MSEnp . ARE(2) = MSEpguy/MSE s and ARE(3) = MSEpp/MSE

Using this measure, Table (6) provides the empirical AREs of REML and the

approaches estim

of variance components

methods where the REML has the lowest MSE.
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ation methods in normal errors siluation, the results show that ARE (1) and
ARE (2) values for all factors conditions are less than 1 which indicate that the REML estimates

are more efficient than corresponding estimators produced by robust
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However, in Table (7) we present the ARE results of symmeltric conlaminated normal
distribution in which errors are contaminated by three levels of contamination (10%, 20% and
30%) and the ratio of the contaminated standard deviation to uncontaminated standard deviation
was sel al 10 as illustrated in Section 3. This situation has been discussed across all factors
conditions (group size, number of groups and interclass correlation coefficients) as shown in the

following table.

Table (7): Asymptomatic relative efficiency for the three levels of contaminated normal distribution (10% - 2004 -30%%)

Number Group sizes - ’j
Level | ICC | of 5 10 1 (5
aroups | ARE(D) | ARE(2) | AREQ) [ ARE(D) | ARE(2) | AREQ) | ARE() ARE(2) | AREQ)
10 68.6 51.5 0.75 46.3 322 0.695 44.1 336 0.762
0.1 | 20 43.16 | 25.45 0.59 3357 | 2282 | 0679 | 3098 | 22.76 0.74
30 4.54 3.57 0.79 361 3.048 0.84 3399 | 2981 | 0877
10 62.6 3529 | 0564 | 42.89 | 2793 0.65 36.62 | 26.023 0.71
i 0.2 r 20 13.16 9.365 0.712 9.91 7.76 0.78 9.03 7.45 0.82 |
30 2.183 | 1.807 | 0.828 1.66 1.45 0.875 1.54 1.386 | 0.902
10 20.15 | 13.69 | 0679 | 13.12 9.96 0.759 | 10.89 | 8.784 0.81
03 [ 20 | s5.59 4.36 0.779 | 4.019 3.36 0.837 3.60 3.13 0.869
30 1.156 1.88 0.855 9.07 7187 | 0.792 | 8603 | 7.181 0.83
10 <229 | 7879 | 1213 | 10812 | 1206 | 1.285 | 1076 | 1617 151
0.0 [ 20 49.9 17.46 | 03499 | 65.63 | 57.23 0.26 82.3 73.8 089 |
30 3828 | 2136 | 0558 | 40.07 | 2273 | 0567 | 39.43 | 2383 | 0604
10 13280 | 168.20 | 1.267 | 213.4 | 180.4 | 0.847 | 237.47 | 187.37 | 0.789
20 02 | 20 ; 94.033 | 6512 | 0693 | 117.15 | 50.79 043 | 11474 | 53.15 046 |
30 12.42 | 13.25 1.07 1855 | 12085 | 0651 | 113.68 | 53.92 | 0.474
10 103624 | 6836 | 0659 | 141.37 | 5937 | 0.419 | 129.99 | 58.82 | 0453
0.3 20 53.23 25.79 0.484 41.14 23.05 056 | 39.70 23.54 0.59
30 12.12 7.92 0654 | 9.986 | 7077 | 0.709 | 1835 | 12.56 | 0.684
10 18.46 | 60.37 3.35 35.09 | 12250 | 3.84 5853 | 193.34 | 3.327
0.0 20 | 22617 | 8339 | 1.995 | 107.38 | 185.96 | 1.182 | 142.86 | 163.661 1.156 |
30 | 1s2.4 | 10168 | 0602 | 162.92 | 89.90 | 0.548 | 166.05 | 93.54 | 0.652
10 2099 | 70.61 3.53 4456 | 184.48 | 1886 | 8622 | 163.98 | 198
. 0.2 [ 20 53.34 | 132.02 | 2.49 17556 | 229.45 | 1.307 | 27234 | 238.71 | 0.877
W% 30 138.16 | 47.14 034 | 11661 | 45285 | 0387 |159.017 | 4659 | 0.179
10 7362 | 6777 | 2869 | 5588 | 249.81 | 4.47 | 127.91 | 253.62 | 198
03 | 20 6204 | 98.49 | 1.565 | 131.57 | 90.93 | 0.687 1727079 | 191756 | 0707
30 | 89.93 1'27.629 0.307 f 98.71 | 26.21 L'F'zsts ?1.98__MJ_&EBZ

where ARE(1) = MSEneas/MSEpp  ARE(Z) = MSEggy/MSEjg and ARE(3) = MSEqp/MSE;q

From previous table the results showed that both robust estimation methods appeared to provide
better performance with small MSEs than REML, also as the level of contamination increases,
the MSE of REML increases, and then the corresponding values of ARE (1) and ARE (2)
increase which reflect the efficiency of both RP and JR approaches (for example, suppose the
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condition of number of groups = 30, group size = 5 and ICC = 0.] we obtain the following pairs
of ARE (1) and ARE (2); (4.54,3.57), (38.28,21.36) and (152.4,101.68) according to the
three levels of contaminations 10%, 20% and 30% respectively).

Moreover, there are effects of the number of groups and of the group size. With respect (o group
size, the larger group size leads to closer in empirical MSEs of the estimated variances of the
three methods and then lower in AREs values as appear in ARE (1) and ARE (2) (for example,
suppose the case of number of groups = 10 and ICC = 0.1 we obtain the following pairs of ARE
(1) and ARE (2); (68.6, 51.5), (46.3,32.2) and (44.1,33.6) corresponding to the three
conditions of the group sizes 5, 10 and 15 respectively with 10% level of contamination). The
factor of number of groups has more effect with the same conclusion of ARE values than the
group size (for example, suppose the condition of group size = 5 and ICC = 0.1 we obtain the
following pairs of ARE (1) and ARE (2); (68.6,51.5), (43.16,25.45) and (4.54,3.57)
according to the three conditions of the number of groups 10, 20 and 30 respectively and 10%
level of contamination).

Although in comparing between RP and JR robust estimation methods in Table (7), we found
that, almost all the values of ARE (3) are less than 1 which reflect the efficient performance of
RP for all for the three levels of contaminated normal distribution,

[n Table (8) we provide the ARE results of skewed contaminated normal distribution where the
errors are contaminated by skewed normal distribution with three levels of contamination (10%,
20% and 30%) and skewnees parameter set at 10. And also this situation has been discussed
across all condition factors included group size, number of groups and interclass correlation
coefficients as shown in the following table.

And as Table (7), we obtain the same conclusion results in Table (8), that in comparing REML
with the two robust approaches and the effects of group size and of the number of groups.
However, in comparing between RP and JR robust estimation methods with respect to ARE (3)
values we obtain a bit different conclusion, that at a small level of skewed contamination (10%),
the values of ARE (3) are larger than 1 which reflect the efficient performance of JR fit since it
provides smaller MSEs than RP fit, however the higher level of skewed contaminated normal
distributions lead to better performance in RP fit especially with large data sample sizes.

————— —the Beyptian Stadistical Journai Vol 62, No T 2075~~~ ——
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Table (8): Asvmptomatic relative cfficien

¢y for the three level of skewed contaminated normal (10% - 20% -30%)

3 Number Group sizes
Level | ICC of s 10 15
aroups | ARE(1) | ARE(2) | ARE(3) [ ARE(I) ARE(ETE\RE(J) ARE(1) ARE(l)I ARE(D) |
10 42.16 8.66 0.21 34.97 | 1686 | 0.48 29.5 2156 | 073
0.1 20 9.476 | 14.96 | 1.58 82 | 31.59 | 3.85 6.79 48.13 | 7.084 |
30 1.35 4.82 3583 | 1.035 | 4.103 3.97 0.92 3.63 3.95
T 1219 | 9.30 0.763 | 9395 | 20.4 h.lg 7.786 | 26.89 3.45
% 0.2 20 372 | 11.26 3.03 3.092 15.3 495 2.46 15.30 6.21
30 0677 | 1982 | 2927 | 0.469 1.38 2939 | 0397 | 1.149 2.894
10 5.11 7782 | 1523 | 3698 | 12.61 3.41 297 | 12.627 | 4.258
0.5 | 20 1.76 5.59 3185 | 1374 | s.01 | 3713 | 1035 | 4.061 3.925
30 264 | 1.06 2.477 4.35 179 | 2414 | 5523 | 2347 | 237
I 10 2881 | 12473 | 256 | 140.86 | 12568 | 0.892 | 202.36 | 12029 | 0594 )
0.t [ sv.sij'sa.mg 0.51 8117 | 3539 | 0437 | 70.414 | 32618 | 0463
| 30 | 12175 | 7.305 0.60 +11.155 6894 | 0618 | 10.67 6.76% 0.634
10 39.97 | 38.87 0.972T 67.51 | 36.65 | 0.543 | 7103 | 3473 0.49
- 0.2 20 2841 | 1510 | 0531 | 2937 | 15005 | 0514 | 2421 | 13.77 0.569
- 30 6.349 4.14 0.652 5.66 3.826 | 0676 | 5397 v 0.691
10 2472 | 1735 | 0702 | 27.743 | 15781 | 0.569 | 26.263 | 14.814 | 0.564
0.3 20 134 | 7865 | 0587 | 13.072 | 7.692 | 0589 | 1075 5.93 0.645 |
30 359 | 249 0.694 312 2.25 0.72 2.97 2.18 0.73
10 1036 | 2827 773 16.6 445.6 26.8 25.2 489.1 | 19.41
0.1 20 18.9 103.2 5.46 3284 | 11801 | 3.59 a7.4 | 105.16 2.23
30 37.28 | 2063 0.55 75.22 | 20.69 0.28 98.62 | 19.95 0.22
10 ] 11.498 | 100.33 | 8.73 20.24 119.2 5.89 31.88 | 110.39 3.46
- 02 | 20 21.76 42.07 1.93 4438 45.32 1.02 69.53 40.85 0.59
¢ 30 33.64 | 11.84 0.35 55.56 | 11.63 0.21 60.95 | 11.23 J 0.185
10 1731 | 4464 | 3625 | 2331 | 4734 | 2.03 3998 | 43.39 | 1.085
0.3 20 23.47 | 21.43 0.91 [750111 2037 | 0444 | 75.703 | 20.26 0.27
30 | 2435 | 7327 | 0301 | 3118 | 7.08 023 | 3063 | 684 | 0223

Thorc ARE(L) = MSEngme/MSErp ARE(2) = MSEpgu,/MSEg and ARE(3) = MSEgp/MSEpe

Finally we present the ARE results when data corrupted by th

e two types of outliers in order Lo
investigate the influence of these outliers on the parameter estimates, their standard errors and

the model variance. For this situation, we corrupted the normal errors with two-types of outliers

as follows: First: 5% of the random errors have been replaced with those drawn from the normal

distribution with mean 10 and variance 15%,

specific group with another drawn from the normal

Then; replaced random effects that belong to a
distribution with mean 10 and variance 152.
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Table (9): Asymptomatic relative wh

'—'I'_ypes Number l:i_ Group sizes - -
of | ICC of T 3 T s
- — gy | —— _

outliers EPOUPS L ARE() | ARE(2) ARE(3) | ARE(]) | ARE(2) | ARE(3) ARE(1) | ARE(2) | ARE(3)

|10 T e02.88 | 57565 | 0955 | 93690 | 10123 | 1080 [ 111171 [ 112696 | To1a
0.1 20 405.11 | 418.39 1.033 | 51893 | 645.24 124 | 711.81 | 58465 0.82 |

30 17653 | 17433 | 0988 | 22042 | 21340 0931 | 3183 | 32768 | 1.03

| 10 ['30551 | 23880 | 078 | 549.50 | 339.13 0617 | 776.44 | 387.73 | 0.499
Type-t | %2 [ 20 | 28792 | 21054 | 0731 | a89.08 | 26450 0.541 | 716.06 | 23698 | 0331

| 164573 | 10522 | 0539 | 264.65 | 12667 | 0479 | 378.069 | 166.58 | 0.441

D 19272 | 11891 | 0617 | 378.95 14271 | 0377 | 510.87 | 15958 | 0.312

0.3 20 24209 | 12146 | 0502 | 493.30 [129.207 | 0262 | 385.19 | 112.82 | 0.25;

30 176.32 70.82 0402 | 210.59 | 7647 | 0363 | 235.88 | 8551 0.363

B |10 | se68 | 1202 | 0212 | 6173 | 1243 | o201 6232 | 1314 | 0211

0.1 20 | 7179 | 3392 | 0473 | s87.88 | 2967 | 003 | 61226 | 2998 | o005

30 17429 | 198.50 | 114 | 35091 | 45172 | 129 | 669 | Boia 1.41

| |10 [s088 | 1663 | 329 | s7as | amcac 758 | 5748 | 4016 | 6.9

Type-z | 02 20 |208302 | 55116 | 241 | 37411 | ssaz | Lsc3 369.4 | 5332 | 1.4a

' 30 118.45 | 12863 | 1086 | 20508 | 257.09 | 1254 | 31632 | 47613 | 1351

10 4473 | 75701 | 1693 | 5203 | 3073 | s01 513 | 2546 | a9y

0.3 20 15524 | 30890 | 199 | 236.06 | 629.14 | 2665 21939 | 51133 | 2331

] | 30 | 8255 | 87.569 | 1061 | 12530 | 14491 | L.is6 | 1836» | 23597 | 129

where ARE(1) = MSEpen /MSEqp . ARE(2)

_ Hend A. Auda,

From the results obtained in Table (9)
estimation method is very sensitive to outl
types of corruption, the robust estimation methods (RP

comparing
one outl

of JR fit.

From the previous empirical analysis we can conclude that,

method is

methods w

Y

e data corrupted by tvpe one and type two outliers

real data from Helwan University.
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. there is a gencral comment that the traditional REML
ters especially in small sample size data. So for both
and JR) are more efficient than REML. [n
between the two approaches of robust estimation methods we conclud
lers except 5 of 27 conditions, RP appears lo be more efficient th
for type two outliers since ARE (3) results are larger

ed that, for type
an JR fit and vice versa
than 1 which reflect the high performance

the classical REMIL. estimation
not reliable for non-normal distribution of errors or d
cspecially when the data has

ata corrupted by outliers
a small sample size. In such cases robust rank-based estimation

ould be preferred. In the next section we provide a small descriptive analysis using a




Robust Estimation Methods in Random Intercept Regression Model: 8¢
A Comparative Study

5. Application

Consider the following real data thal consists of 433 students in 14 sections in the faculty of
Social Work, Helwan University. We consider two measurements occasions: the first 1s when the
students were in the first vear (2015) of their undergraduate study, and two years later in the
third year (2017). We use the score in the statistics module administered on these lwo occasions

together as well as the student’s gender.

Figure | is a scatterplot of the third year statistic test score by the first year lest score.

Figure 1 Scatterplot of 3" year by 1% year statistic test
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first-year stat scores

From Figure (1), there is no distinguishing between the sections to which students belong. In
addition, there is a trend with increasing first year statistics test scores associated with increasing
third year statistics tesl scores.

[n Figure (2) we repeat the previous scatterplot for the different fourteen sections. The plot
shows that the slopes are not the same since sections 1, 8, 12, 13 and 14 show a steeper slope
compared to other sections. So the way we are going to deal with this data is to add a random
section’s effect. This allows us to resolve the non-independence between student’s scores in the
same section.

The Egyptian Statistical Journal Vol.62, No. 1, 2018
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Figure 2 Scatterplot of 3" year by 1% year statistic test
scores for fourteen sections
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Figure 3 boxplots of 3™ year statistic scores across
fourteen sections
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Figure (3) provided a visual depiction of how this looks like using boxplots, we immediately see
that on the average the pupil's test scores on their third year are ereater than or equal to eighty
and sections 6, 11 and 14 appear to have the highest average of scores. But on top of that. within
sections, we also see lots of individual scores variation, where some students having relatively
lower scores for their section score average which reflect the presence of outliers in the data.

Now we can model these individual differences by assuming different random intercepts for each
section using the following random intercept regression model:

third level.scores;; = a + [ first level.scores;; + f, gendery; + 8o; + & i = L 14
p=1,2, walh (21]

where | refer to section and n; represent the number of stalistic test scores in section j. To
determine if data differ from the normal distribution or not we use shapiro—wilk test where
the null hypothesis of this test is that the data is normally distributed. The value of test statistic is
0.898 with p-value less than nominal level a (seta = 0.05), then the null hypothesis is rejected
and there is evidence that the data tested are not from a normally distributed population.
Additional in investigating the normality we use Quantile-Quantile (Q-Q) plot, which represents
a graphical method for comparing two probability distributions (sample distribution  and
theoretical distribution) by plotting their residual quantiles against each other. The Q-Q plot of
the data is given in Figure (4).

Figure 4 Normal Q-Q plot.
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The above Q-Q plot shows that most of the data points are on or near the straight reference line
but there are still some points at the bottom deviate from the reference line. Then, we can
conclude that there is obvious violation of the normality assumption of the error distributions.

i
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Table (10): REML, GR and JR estimates and their SEs

[ Mecthod B, SE (ﬁl) Var (%)
| REMIL, 030 | 0.033 122.83

RP 031 - 0.028 79.53
t JR | 030 0.027 64.51

To examine the parameters involved in this model, Table (10) displays the estimated of fixed and
random effects and their standard errors for the REML, RP and JR analyses, where &2 =
¢ (between sections) + 6. (within sections). The results show that non-normal residuals have
little or no effects on the parameter estimates that they are almost the same. However, for the
random part in the model, there are major differences between the REML and RP and JR robust
estimation methods in the results of the variance of the estimated variance in the model. The
maximum value of variance is obtained by using REML which reflect the sensitive of this
classical method o the outliers included in the data which appeared in Figure (3) and also
affected by the violation in the normality assumption of the errors, although the robust methods
(RP and JR) do perform better than REML and the minimum variance obtained by using JR fit.

Now we can say that, even little contamination (as violation in normality assumption or data
contains outliers) can drive REML estimates far away from what they would be without the
contamination. In these cases robust estimation methods would be preferable since they are less
sensitive to outliers, violation assumptions or any other contamination.

6. Conclusion

[n this paper we extend the simulation study presented by Auda et al. (2018) to involve another
robust approach RP method that we compared the traditional restricted maximum likelihood
method REML, robust joint ranking method JR and robust parametric method RP. For the fixed
part in the model and according to empirical average bias results the study showed that non-
normal situations of error distributions have almost no effects on the regression coefficients, that
the estimates of regression cocfficients are unbiased for the three methods.

However, for the random part in the model and according to asymplotic relative efficiency
results among the three methods, the empirical validity and efficiency for the fixed effects for
REML is reported to be poorer than the other two robust methods which are less sensitive to
outliers and protected from the violation in normality assumption more than REML. However, in
comparing between the robust estimation methods we concluded that in the cases ol generated
errors from skewed contaminated normal distribution and corrupted the vector of random effects
by outliers, the JR method provide better efficient performance than RP fit. However, when
errors gencrated from contaminated normal distribution the RP method would be preferred, also
the large sample sizes especially in the number of groups leads to much more accurate results.

___ The Egyptian Statistical Journal Vol. 62, No. 1, 201
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We also illustrated the robustness of the RP and JR procedures on practical using a real data set

from the faculty of social work's math-achievement Helwan University that contained several

outh

ers and violate normality assumption. The robust procedures were much less sensitive Lo the

effect of the outliers than REML and the minimum variance is obtained by using JR fil.
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