Beta
142702

A Fuzzy Self-Tuning Hybrid Force/Position Controller for Robotic Manipulator.

Article

Last updated: 22 Jan 2023

Subjects

-

Tags

Electrical Engineering

Abstract

The major problems of hybrid force/position control arise from uncertainty of the robot manipulator and unknown parameters of the task environment. This paper proposes a self tuning fuzzy hybrid forced position control scheme, which can force the end-effector lo tracking a desired force and position trajectories in the Cartesian space. The output of the self tuning algorithm adjusted on-line by the Scaling Factor (SF). The selection of SF value depends on the values of error (e) and change of error (e). The present work is applied to the control of a two degrees-of-freedom (DOF) planar robot manipulator. The simulation results were carried out by using mailab5.3 program. 

DOI

10.21608/bfemu.2021.142702

Authors

First Name

F.

Last Name

Abdel-Kader

MiddleName

M.

Affiliation

Suez Canal University, Faculty of Engineering port-Said

Email

-

City

-

Orcid

-

First Name

K.

Last Name

El-Serafi

MiddleName

A.

Affiliation

Suez Canal University, Faculty of Engineering port-Said

Email

-

City

-

Orcid

-

First Name

A.

Last Name

El-Saadawi

MiddleName

M.

Affiliation

Suez Canal University, Faculty of Engineering port-Said

Email

-

City

-

Orcid

-

First Name

A.

Last Name

Abdel-Rhman

MiddleName

S.

Affiliation

Suez Canal University, Faculty of Engineering port-Said

Email

-

City

-

Orcid

-

Volume

27

Article Issue

3

Related Issue

21025

Issue Date

2002-09-01

Receive Date

2002-07-24

Publish Date

2021-01-24

Page Start

17

Page End

26

Print ISSN

1110-0923

Online ISSN

2735-4202

Link

https://bfemu.journals.ekb.eg/article_142702.html

Detail API

https://bfemu.journals.ekb.eg/service?article_code=142702

Order

5

Type

Research Studies

Type Code

1,205

Publication Type

Journal

Publication Title

MEJ. Mansoura Engineering Journal

Publication Link

https://bfemu.journals.ekb.eg/

MainTitle

-

Details

Type

Article

Created At

22 Jan 2023