Experimental Comparative Study on Autoencoder Performance for Aided Melanoma Skin Disease Recognition
Last updated: 03 Jan 2025
10.21608/ijicis.2022.104799.1136
Deep learning, segmentation, Skin lesion, Melanoma detection, Lesion segmentation
Zahraa
Diame
Emad
Department of Computer Science, Faculty of Computers and Information Sciences, Ain Shams University Cairo, Egypt
zahraa2.edf@gmail.com
Maryam
ElBery
Ain Shams University - FAculty of Computers
maryam_nabil@cis.asu.edu.eg
0000-0001-7424-5869
Mohammed
Salem
A.-M.
FCIS _Ain Shams
salem@cis.asu.edu.eg
0000-0003-1489-9830
Mohamed
Roushdy
Ismail
Faculty of Computer and Information Technology, Future University in Egypt, Cairo, Egypt
mohamed.roushdy@fue.edu.eg
Cairo
0000-0002-9655-3229
22
1
31259
2022-02-01
2021-11-07
2022-02-01
88
97
1687-109X
2535-1710
https://ijicis.journals.ekb.eg/article_219174.html
https://ijicis.journals.ekb.eg/service?article_code=219174
7
Original Article
494
Journal
International Journal of Intelligent Computing and Information Sciences
https://ijicis.journals.ekb.eg/
Experimental Comparative Study on Autoencoder Performance for Aided Melanoma Skin Disease Recognition
Details
Type
Article
Created At
22 Jan 2023