1143

Deep Learning Approach for Credit Card Fraud Detection

Article

Last updated: 05 Jan 2025

Subjects

-

Tags

credit card
Deep learning
CNN
imbalanced data
and fraud detection
Deep Learning Approach for Credit Card Fraud Detection
2021 International Conference on Electronic Engineering (ICEEM)

Abstract

As technology evolves rapidly, the world is using credit cards instead of cash in its everyday lives, opening up a new way for fraudulent people to abuse them. Credit card fraud losses reached approximately $28.65 billion in 2019, according to Nilsson's report, and global card fraud is expected to reach around $32.96 billion by 2023. Providers should therefore develop an efficient model to detect and prevent fraud early. In this paper, we used deep learning techniques as an effective way to detect fraudsters in credit card transactions. Therefore, we present a model for predicting legitimate transactions or fraud on Kaggle's credit card dataset. The proposed model is OSCNN (Over Sampling with Convolution Neural Network) which is based on over-sampling preprocessing and CNN (convolution neural network). The MLP (Multi-layer perceptron) was also applied to the dataset. Comparing the MLP-OSCNN results, they proved that the proposed model achieved better results with 98% accuracy.

Keywords

credit card, Deep learning, CNN, imbalanced data, and fraud detection

Volume

2nd IEEE International Conference on Electronic Eng., Faculty of Electronic Eng., Menouf, Egypt, 3-4 July. 2021

Issue Date

1 Jan 2021

Publish Date

14 Jun 2021

Page Start

233

Page End

237

Link

https://iceem2021.conferences.ekb.eg/article_1143.html

Order

43

Publication Type

Conference

Publication Title

2021 International Conference on Electronic Engineering (ICEEM)

Publication Link

https://iceem2021.conferences.ekb.eg/

Details

Type

Article

Locale

en

Created At

13 Dec 2022