Improving resource allocation in 5G networks using traffic segmentation based on machine learning techniques
Last updated: 04 May 2025
10.21608/ijt.2025.372415.1095
5G, Network slicing, Enhanced Mobile Broadband (eMBB), Massive Machine-Type Communi-cations (mMTC), Ultra-Reliable Low-Latency Communications (URLLC)
Safi
Ibrahim
Dept, of Information Technology, Egyptian E-Learning University, Egypt
sibrahim@eelu.edu.eg
Younis
Younis
S.
Dept. of Information Technology ,Faculty of Computer and Information, South Valley Uni-versity
younis@svu.edu.eg
Assuit
0009-0005-5309-5255
Kamal
Hamza
S.
Dept, of Information Technology, Egyptian E-Learning University, Egypt
khamza@eelu.edu.eg
Mohamed
Ashour
M.
EELU - CIT college and Mansoura Univ. Faculty of Eng
mohmoh@mans.edu.eg
0000000202940552
05
01
52787
2025-01-01
2025-04-16
2025-05-01
1
15
2805-3044
https://ijt.journals.ekb.eg/article_425390.html
http://journals.ekb.eg?_action=service&article_code=425390
425,390
Original Article
2,522
Journal
International Journal of Telecommunications
https://ijt.journals.ekb.eg/
Improving resource allocation in 5G networks using traffic segmentation based on machine learning techniques
Details
Type
Article
Created At
04 May 2025