Beta
416025

A Smart Model to Predict the Problems of Telecommunication Customers

Article

Last updated: 09 Mar 2025

Subjects

-

Tags

-

Abstract

The proliferation of data on the internet has been greatly accelerated by the emergence of social media platforms over the past twenty years. These platforms serve as valuable sources of user-generated information, with Twitter particularly standing out as a popular microblogging platform that provides concise insights. However, analysing informal expressions from such platforms presents significant challenges, especially in understanding and analysing customer concerns within the telecom sector. Our research focuses on pre-processing natural language sentences to aid comprehension and analysis. We explored two distinct approaches: using the Universal Sentence Encoder and pre-processing models to prepare tweets for analysis. Additionally, we utilized algorithms such as BERT and regression after pre-processing. This approach allowed us to test four distinct modules: pre- processing with BERT, pre-processing with regression, Universal Sentence Encoder with BERT, and Universal Sentence Encoder with regression. The categorized data is then leveraged to develop predictive models through machine learning techniques aimed at assessing public sentiment and anticipating customer issues within the telecommunications sector. This study seeks to advance pre-processing methodologies to improve decision-making processes and enhance customer satisfaction within the telecommunication industry segment.

DOI

10.21608/sjrbs.2025.305976.1740

Keywords

Social media analysis, telecom sector, customer problems, classification, Machine Learning, Customer churn prediction

Authors

First Name

Samar

Last Name

Mahmoud Ibrahim Gouda

MiddleName

-

Affiliation

قسم نظم معلومات الاعمال-كليه التجارة واداره الاعمال- جامعه حلوان

Email

samargooda368@gmail.com

City

القاهره

Orcid

-

First Name

Fahad

Last Name

kamal

MiddleName

-

Affiliation

قسم نظم المعلومات - كلية الحاسبات والذكاء الاصطناعى - جامعة بنى سويف

Email

drfahad@fcis.bsu.edu.eg

City

cairo

Orcid

0000-0001-5894-9583

First Name

Riham

Last Name

Mohamed Younis Haggag

MiddleName

-

Affiliation

قسم نظم معلومات الاعمال-كليه التجاره واداره الاعمال- جامعه حلوان

Email

rihamhaggagg@yahoo.com

City

cairo

Orcid

0009-0006-7405-5102

Volume

39

Article Issue

1

Related Issue

54279

Issue Date

2025-03-01

Receive Date

2024-07-30

Publish Date

2025-03-01

Page Start

1,505

Page End

1,547

Print ISSN

1110-2373

Online ISSN

2682-4876

Link

https://sjrbs.journals.ekb.eg/article_416025.html

Detail API

http://journals.ekb.eg?_action=service&article_code=416025

Order

416,025

Type

المقالة الأصلية

Type Code

1,324

Publication Type

Journal

Publication Title

المجلة العلمية للبحوث والدراسات التجارية

Publication Link

https://sjrbs.journals.ekb.eg/

MainTitle

A Smart Model to Predict the Problems of Telecommunication Customers

Details

Type

Article

Created At

09 Mar 2025