SpamML: An Efficient Framework for Detecting Spam Emails Using Machine Learning
Last updated: 15 Feb 2025
10.21608/jocc.2025.411113
Spam Email Prediction, Machine Learning, classification, Naïve Bayes, Gradient boosting, Linear Regression, K-nearest neighbor
Diaa
AbdElminaam
s
Department of Data Science , Faculty of Computer Science , Misr International University , Cairo , Egypt
diaa.salama@miuegypt.edu.eg
0000-0002-1544-9906
Maged
Farouk
Department of Business Information Systems, Faculty of Business, Alamein International University, Alamein, Egypt
melsayed@aiu.edu.eg
Alamein
Nashwa
Shaker
Department of Business Information Systems, Faculty of Business, Alamein International University, Alamein, Egypt
nragab@aiu.edu.eg
Alamein
Omnia
Elrashidy
Department of Business Information Systems, Faculty of Business, Alamein International University, Alamein, Egypt
oelrashidy@aiu.edu.eg
Alamein
Reda
Elazab
Department of Business Information Systems, Faculty of Business, Alamein International University, Alamein, Egypt
relazab@aiu.edu.eg
Alamein
4
1
53728
2025-02-01
2024-01-08
2025-02-01
43
54
2636-3577
https://jocc.journals.ekb.eg/article_411113.html
http://journals.ekb.eg?_action=service&article_code=411113
4
Original Article
731
Journal
Journal of Computing and Communication
https://jocc.journals.ekb.eg/
SpamML: An Efficient Framework for Detecting Spam Emails Using Machine Learning
Details
Type
Article
Created At
15 Feb 2025