Aim
This study was undertaken to test the effect of flaxseed oil and silymarin on the oxidative stress induced in the renal tissue of male albino rats on exposure to a sublethal dose of lead acetate.
Methods
Adult male albino rats were exposed to oral doses of lead acetate solution (1/20 LD50) for 6 weeks. Flax seed oil was added to second group and a third group received silymarin in addition.
Results
Lead-induced oxidative stress was indicated by elevated malondialdehyde level in kidney homogenates. This level dropped markedly in kidney tissue of rats receiving flaxseed oil, and better results were observed in the group receiving both flaxseed oil and silymarin. Histopathological examination of hematoxylin and eosin-stained kidney sections showed degenerative changes in the kidney tissue, in addition to disorganization of the collecting duct. Renal function was not significantly affected. Less degenerative changes were noted in the group receiving flaxseed oil, and they were nearly abolished in the group receiving both flaxseed oil and silymarin. The normal kidney histology was almost restored in such group. Endogenous antioxidants like reduced glutathione and glutathione peroxidase enzyme levels were reduced with lead acetate intake and raised significantly (P<0.05) with flaxseed oil intake. The addition of silymarin resulted in further increase in glutathione peroxidase level (P<0.05).
Conclusion
This study revealed the potential protective role of flaxseed oil as a compound rich in phenolic antioxidant components. Silymarin, a potent antioxidant known for its hepatoprotective effect, has a synergistic effect when added to flaxseed oil, ameliorating lead-induced renal damage.