Detection of PQ Short Duration Variations using Stockwell Transform with LSTM
Last updated: 28 Dec 2024
10.21608/sceee.2023.240048.1006
Power Quality, detection, Short duration variations, LSTM, S-transform
Mohamed
Ali
Ali
Operation Engineer
mohamed.ali@eng.suez.edu.eg
North Sinai
0009-0003-0824-0295
Eyad
Oda
S
Electrical Engineering Department, Faculty of Engineering, Suez Canal University, Ismailia, Egypt
eyad.oda@eng.suez.edu.eg
0000-0003-3024-5108
Abdelazeem
Abdelsalam
Ismailia
aaabdelsalam@eng.suez.edu.eg
Ismailia
Almoataz
Abdelaziz
Y
Electrical Power & Machines Dept., Faculty of Engineering, Ain Shams University, Cairo, Egypt
almoataz_abdelaziz@eng.asu.edu.eg
Cairo
1
2
46297
2023-07-01
2023-10-01
2023-07-01
33
48
2805-3141
2805-315X
https://sceee.journals.ekb.eg/article_342955.html
https://sceee.journals.ekb.eg/service?article_code=342955
342,955
Original Article
2,132
Journal
Suez Canal Engineering, Energy and Environmental Science
https://sceee.journals.ekb.eg/
Detection of PQ Short Duration Variations using Stockwell Transform with LSTM
Details
Type
Article
Created At
28 Dec 2024