Beta
316570

Limit Theorems for Lower-Upper Extreme Values from Two-Dimensional Distribution Function

Article

Last updated: 05 Jan 2025

Subjects

-

Tags

-

Abstract

The limiting distribution of the random vector (V̅_(k,k^':n) - b̅_n) / a̅_n = (X_(1,k:n) - b₁ₙ) / a₁ₙ, (X_(2,n-k^'+1:n) - b₂ₙ) / a₂ₙ   k and k' being constants, are investigated, necessary and sufficient conditions for waking convergence of the distribution of the above vector are obtained. The conditions under which the components of the vector (V̅_(k,k^':n) - b̅_n) / a̅_n  are asymptotically independent are also obtained. Some cases are examined when the number of observations is a random variable.

DOI

10.21608/esju.1988.316570

Keywords

Convergence, Extreme Values, Limit Theorems, Necessary and Sufficient Conditions, two, Dimensional Distribution Function

Authors

First Name

H.

Last Name

Barakat

MiddleName

M.

Affiliation

-

Email

-

City

-

Orcid

-

Volume

32

Article Issue

2

Related Issue

43398

Issue Date

1988-12-01

Receive Date

2023-09-07

Publish Date

1988-12-01

Page Start

153

Page End

167

Print ISSN

0542-1748

Online ISSN

2786-0086

Link

https://esju.journals.ekb.eg/article_316570.html

Detail API

https://esju.journals.ekb.eg/service?article_code=316570

Order

6

Type

Original Article

Type Code

1,914

Publication Type

Journal

Publication Title

The Egyptian Statistical Journal

Publication Link

https://esju.journals.ekb.eg/

MainTitle

Limit Theorems for Lower-Upper Extreme Values from Two-Dimensional Distribution Function

Details

Type

Article

Created At

28 Dec 2024