Beta
314820

Fractal Dimensions of Random Trees

Article

Last updated: 05 Jan 2025

Subjects

-

Tags

-

Abstract

Our goal in this paper is to determine whether the fractal dimensions (FD) of random trees is finite. Two types of random trees are considered. We first consider spherically symmetric random trees in which all vertices at level n have degree 3 with probability qn = 1/n^σ and degree 2 with probability 1 - qn. We show that FD for these trees is finite if and only if . Secondly, we consider random trees which correspond branching processes in varying environments and a similar result is obtained. Whenever we obtained a finite FD, an upper bound was found.

DOI

10.21608/esju.1994.314820

Keywords

Branching Processes, Fractal Dimensions, Random Trees, Spherically Symmetric

Authors

First Name

Mokhtar

Last Name

Konsowa

MiddleName

H.

Affiliation

-

Email

-

City

-

Orcid

-

Volume

38

Article Issue

1

Related Issue

43177

Issue Date

1994-06-01

Receive Date

2023-08-27

Publish Date

1994-06-01

Page Start

129

Page End

137

Print ISSN

0542-1748

Online ISSN

2786-0086

Link

https://esju.journals.ekb.eg/article_314820.html

Detail API

https://esju.journals.ekb.eg/service?article_code=314820

Order

6

Type

Original Article

Type Code

1,914

Publication Type

Journal

Publication Title

The Egyptian Statistical Journal

Publication Link

https://esju.journals.ekb.eg/

MainTitle

Fractal Dimensions of Random Trees

Details

Type

Article

Created At

28 Dec 2024