Beta
314834

On the Uniform Rates of Convergence in the Central Limit Theorem for Functions of the Average of I. I. D. Random Variables

Article

Last updated: 05 Jan 2025

Subjects

-

Tags

-

Abstract

Let {Xk, k => 1} be a sequence of i.i.d.r.v.s with common distribution function (d.f.) F. Suppose F belongs to the domain of normal attraction of a stable law  with index σ, 1 < σ  ≤ 2 and F satisfies some regularity conditions. Let Sn = X1 + ... + Xn  and g be a real differentiable function such that |g'(x) - g'(y)|  L |x - y|, L>0. We give uniform rate of convergence in the Central Limit Theorem (CLT) for the sequence: ( (n^1-r) / g'(o) ) { g(sn / n) - g(0) },  n ≥ 1, g'(0)  0

DOI

10.21608/esju.1993.314834

Keywords

Central Limit Theorem, Differentiable Function, Regularity Conditions, Uniform Rates of Convergence

Authors

First Name

Prashant

Last Name

Kirkire (Baroda)

MiddleName

-

Affiliation

-

Email

-

City

-

Orcid

-

Volume

37

Article Issue

1

Related Issue

43175

Issue Date

1993-06-01

Receive Date

2023-08-27

Publish Date

1993-06-01

Page Start

59

Page End

64

Print ISSN

0542-1748

Online ISSN

2786-0086

Link

https://esju.journals.ekb.eg/article_314834.html

Detail API

https://esju.journals.ekb.eg/service?article_code=314834

Order

6

Type

Original Article

Type Code

1,914

Publication Type

Journal

Publication Title

The Egyptian Statistical Journal

Publication Link

https://esju.journals.ekb.eg/

MainTitle

On the Uniform Rates of Convergence in the Central Limit Theorem for Functions of the Average of I. I. D. Random Variables

Details

Type

Article

Created At

28 Dec 2024