Beta
314796

Partitioning Error Spaces in Linear Models

Article

Last updated: 05 Jan 2025

Subjects

-

Tags

-

Abstract

Abstract This paper introduces the general idea of error contrasts, their properties, and uses. Error contrasts is a way for partitioning the error space and depend on it's canonical representation, that is the vector space of linear unbiased estimators of zero. It appears that breaking down sums of squares of error to contrasts each with one degrees of freedom is very useful in inference problems. In particular, negative variance values of ANOVA estimates, testing problems, and constructing exact confidence intervals for a positive linear combinations of variance component. Illustrations in unbalanced models in case of one way random analysis of variance and simple nested designs are presented.

DOI

10.21608/esju.1995.314796

Keywords

linear model, One Way Random Analysis of Variance, Partitioning Error Spaces, Simple Nested Designs, Unbalanced Model

Authors

First Name

El-Houssainy

Last Name

Rady

MiddleName

A.

Affiliation

-

Email

-

City

-

Orcid

-

Volume

39

Article Issue

1

Related Issue

43171

Issue Date

1995-06-01

Receive Date

2023-08-27

Publish Date

1995-06-01

Page Start

51

Page End

64

Print ISSN

0542-1748

Online ISSN

2786-0086

Link

https://esju.journals.ekb.eg/article_314796.html

Detail API

https://esju.journals.ekb.eg/service?article_code=314796

Order

3

Type

Original Article

Type Code

1,914

Publication Type

Journal

Publication Title

The Egyptian Statistical Journal

Publication Link

https://esju.journals.ekb.eg/

MainTitle

Partitioning Error Spaces in Linear Models

Details

Type

Article

Created At

28 Dec 2024