Thyroid Disease Multi-class Classification based on Optimized Gradient Boosting Model
Last updated: 05 Jan 2025
10.21608/ejai.2023.205554.1008
Human healthcare, Thyroid disease, artificial intelligence, XGBoost algorithm, hyperparameters optimization
Mona
Alnaggar
Robotics and intelligent machines, faculty of artificial intelligence, Kafrelsheikh University
mona.alnaggar@ai.kfs.edu.eg
Mansoura
0000-0001-8155-8089
Mohamed
Handosa
Department of Computer science, Faculty of Computers and Information, Mansoura University, Egypt
handosa@mans.edu.eg
Mansoura
Tamer
Medhat
Electrical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Egypt
tmedhatm@eng.kfs.edu.eg
Kafrelsheikh
0000-0002-2468-3438
M.
Z. Rashad
Computer science Department, Faculty of Computers and Information, Mansoura University, Egypt
magdi_z2011@yahoo.com
Mansoura
2
1
40938
2023-04-01
2023-04-11
2023-04-01
1
14
2786-0205
2786-0213
https://ejai.journals.ekb.eg/article_295919.html
https://ejai.journals.ekb.eg/service?article_code=295919
295,919
Original Article
1,898
Journal
Egyptian Journal of Artificial Intelligence
https://ejai.journals.ekb.eg/
Thyroid Disease Multi-class Classification based on Optimized Gradient Boosting Model
Details
Type
Article
Created At
28 Dec 2024