Detecting Dusty and Clean Photovoltaic Surfaces Using MobileNet Variants for Image Classification
Last updated: 04 Jan 2025
10.21608/svusrc.2024.308832.1232
Deep learning, Dust Detection, Image classification, MobileNet Variants, Photovoltaic Surfaces
Montaser
Abdelsattar
Electrical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt
montaser.a.elsattar@eng.svu.edu.eg
Qena
0000-0003-1268-6209
Ahmed
Rasslan
AbdelMoety Ahmed
Electrical Engineering Department, Faculty of Engineering, South Valley University, Qena 83523, Egypt.
ahmed.abdelmoety@eng.svu.edu.eg
Qena
0009-0007-3567-6069
Ahmed
Emad-Eldeen
Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
ahmed.emad@psas.bsu.edu.eg
6
1
51304
2025-06-01
2024-07-31
2025-06-01
9
18
2785-9967
2735-4571
https://svusrc.journals.ekb.eg/article_389988.html
https://svusrc.journals.ekb.eg/service?article_code=389988
389,988
Original research articles
1,585
Journal
SVU-International Journal of Engineering Sciences and Applications
https://svusrc.journals.ekb.eg/
Detecting Dusty and Clean Photovoltaic Surfaces Using MobileNet Variants for Image Classification
Details
Type
Article
Created At
28 Dec 2024