Artificial Neural Networks-Based Energy Storage Predictor of (Ba0.85Ca0.15) (Ti0.9Zr0.1) O3 under Temperature-Induced Variation
Last updated: 04 Jan 2025
10.21608/svusrc.2024.297015.1220
Artificial Neural Networks, Energy Storage Parameters, Ceramic Capacitors, Temperature variation, Ferroelectric Hysteresis Loops
Dina
A. Naser
basics science, High Institute of Engineering &Technology Luxor- Tod, Luxor, Egypt
dinaabdenaser29@gmail.com
luxor
Mohamed
Essai
Hassan
communication, faculty of engineering, Al-Azhar University, Qena
mhessai@azhar.edu.eg
Abd El-Razek
Mahmoud
Physics Department, Faculty of Science, South Valley University, Qena, Egypt
abdelrazek.mahmoud@sci.svu.edu
G. A.
Gamal
Physics Department, Faculty of Science, South Valley University, Qena, Egypt
gamal.elkareem@sci.svu.edu.eg
6
1
51304
2025-06-01
2024-06-12
2025-06-01
1
8
2785-9967
2735-4571
https://svusrc.journals.ekb.eg/article_389625.html
https://svusrc.journals.ekb.eg/service?article_code=389625
389,625
Original research articles
1,585
Journal
SVU-International Journal of Engineering Sciences and Applications
https://svusrc.journals.ekb.eg/
Artificial Neural Networks-Based Energy Storage Predictor of (Ba0.85Ca0.15) (Ti0.9Zr0.1) O3 under Temperature-Induced Variation
Details
Type
Article
Created At
28 Dec 2024