Detecting the Probability of Fraud in Interim Financial Statements Using Machine Learning Models: Do Correla-tion-Based Analysis and Principal Component Analysis for Dimensionality Reduction Matter?
Last updated: 25 Dec 2024
10.21608/aljalexu.2024.381069
Financial Statement Fraud, Fraud detection, Machine learning classification algorithms, De-sign science research, Comparative study, dimensionality reduction, Imbalanced datasets
Hosam Mohamed Ragab
Moubarak
Accounting Department, Faculty of Business, Alexandria University, Alexandria, Egypt Accounting and Information Technology Department, Faculty of International Business and Humanities, Egypt-Japan University of Science and Technology (EJUST), New Borg Al-Arab, Alexandria, Egypt
hosam.moubarak@alexu.edu.eg
8
3
50183
2024-09-01
2024-06-25
2024-09-22
87
138
2682-3144
2735-4954
https://aljalexu.journals.ekb.eg/article_381069.html
https://aljalexu.journals.ekb.eg/service?article_code=381069
16
المقالة الأصلية
1,054
Journal
مجلة الاسکندرية للبحوث المحاسبية
https://aljalexu.journals.ekb.eg/
Detecting the Probability of Fraud in Interim Financial Statements Using Machine Learning Models: Do Correla-tion-Based Analysis and Principal Component Analysis for Dimensionality Reduction Matter?
Details
Type
Article
Created At
25 Dec 2024