Light Weight Human Activity Recognition using Raspberry PI IoT Edge and Reduced Features from Smartphones
Last updated: 04 Jan 2025
10.21608/ijci.2023.235233.1121
IoT Edge, Raspberry Pi, Human activity recognition, Feature Selection, Machine Learning
Ayman
Wazwaz
Computer Engineering Department, College of Information Technology and Computer Engineering, Palestine Polytechnic University, Hebron, Palestine
aymanw@ppu.edu
Hebron
0000-0003-2405-2289
Khalid
Amin
Information Technology dept., Faculty of Computers and Information, Menoufia University, Shebin El Kom, Egypt
k.amin@ci.menofia.edu.eg
0000-0002-9594-8827
Noura
Semary
Department of Information Technology, Faculty of Computers and Information Menoufia University, Shebin El Kom, Egypt
noura.samri@ci.menofia.edu.eg
0000-0003-4244-9546
Tamer
Ghanem
Department of Information Technology, Faculty of Computers and Information, Menofia University, Shebin El Kom, Egypt
tamer.ghanem@ci.menofia.edu.eg
10
3
43466
2023-11-01
2023-09-10
2023-11-01
1
8
1687-7853
2735-3257
https://ijci.journals.ekb.eg/article_316924.html
https://ijci.journals.ekb.eg/service?article_code=316924
2
Original Article
877
Journal
IJCI. International Journal of Computers and Information
https://ijci.journals.ekb.eg/
Light Weight Human Activity Recognition using Raspberry PI IoT Edge and Reduced Features from Smartphones
Details
Type
Article
Created At
24 Dec 2024