Beta
314374

Separation for Schrodinger-type operators in weighted Hilbert spaces

Article

Last updated: 24 Dec 2024

Subjects

-

Tags

Basic and applied research of Botany

Abstract

The aim of this paper is to study the separation property of the Schrodinger operator L of the form Lf(x)=-L_0 f(x)+V(x)f(x),x∈R^n, in the weighted Hilbert space H^∼=L_(2,k) (R^n,H), the statement that achieve the separation, and the coercive estimate, with the operator potential V(x)∈L(H) for every x∈R^n, where L(H) is the space of all bounded linear operators on the arbitrary Hilbert space H. The operator L_0=∑_(i,j=1)^n ∂/(∂x_i ) a_ij (x)∂/(∂x_j )+∑_(i=1)^n b_i (x)∂/(∂x_i ) is the differential operator with the real-valued continuous functions a_ij (x) and b_i (x). Furthermore, we study the existence and uniqueness of the solution of the second order differential equation -∑_(i,j=1)^n ∂/(∂x_i ) a_ij (x)∂/(∂x_j ) f(x)-∑_(i=1)^n b_i (x)∂/(∂x_i ) f(x)+V(x)f(x)=W(x), where W(x)∈H^∼, in the weighted Hilbert space H^∼=L_(2,k) (R^n,H), such that k∈C^1 (R^n ) is positive weight function.
Keywords: Separation; Schrodinger-type operator; Operator potential; Hilbert space; Laplace operator; Coercive estimate; Existence and uniqueness.
AMS Subject Classification: 47F05, 58J99.

DOI

10.21608/bfszu.2023.182373.1231

Keywords

Separation, Schrodinger-type operator, Operator potential, Hilbert space, existence and uniqueness

Authors

First Name

Nehal

Last Name

Abdelsalam

MiddleName

Ahmed Mohamed

Affiliation

Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

Email

nihal.a.abdelsalam@gmail.com

City

-

Orcid

0000-0003-3349-3780

First Name

Hassan

Last Name

Abu-Donia

MiddleName

M.

Affiliation

Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

Email

donia_1000@yahoo.com

City

Zagazig

Orcid

-

First Name

Hany

Last Name

Atia

MiddleName

-

Affiliation

Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

Email

h_a_atia@hotmail.com

City

Zagazig

Orcid

-

Volume

2023

Article Issue

3

Related Issue

38870

Issue Date

2023-10-01

Receive Date

2022-12-23

Publish Date

2023-10-01

Page Start

98

Page End

107

Print ISSN

1110-1555

Link

https://bfszu.journals.ekb.eg/article_314374.html

Detail API

https://bfszu.journals.ekb.eg/service?article_code=314374

Order

10

Type

Original Article

Type Code

838

Publication Type

Journal

Publication Title

Bulletin of Faculty of Science, Zagazig University

Publication Link

https://bfszu.journals.ekb.eg/

MainTitle

Separation for Schrodinger-type operators in weighted Hilbert spaces

Details

Type

Article

Created At

24 Dec 2024