Beta
324467

DEVELOPMENT INTELLIGENT PREDICTION MODELS FOR EARNED VALUE INDICATORS IN WASTEWATER TREATMENT PLANTS PROJECTS

Article

Last updated: 24 Dec 2024

Subjects

-

Tags

Civil engineering

Abstract

Despite the difficulty of estimating in the early stages of the life of the projects in light of the limited data and information in the contracting documents, and for the purpose of overcoming this problem and making high-accuracy decisions, traditional and smart techniques have been applied to estimate the earned value indicators with a high degree of accuracy and with minimal errors, in order to empower the stakeholders accurate forecasting of time and cost performance. Therefore, main objective of this research was to compare the accuracy of three techniques for estimating earned value indicators, which are the multiple regression analysis technique, artificial neural networks, and the support vector machine technique for the selected research sample, which are wastewater treatment plants projects in the Republic of Iraq. Accordingly, nine intelligent models were developed to estimate scheduling performance index, cost performance index, and overall performance index. Data and information in this study were collected from wastewater treatment plants projects in Iraq. The number of these projects that were used in building of intelligent models was (32) projects, these data was collected using various methods such as questionnaires, historical data, work study, and field cohabitation. Nine intelligent prediction models were developed using three techniques, namely, Artificial Neural Networks Models (ANNM), Support Vector Machines Models (SVMM), and Multiple Linear Regression Models (MLRM)), to predict earned value indicators. Three acquisitions, namely Scheduling Performance Index (SPI), (CPI) and (CSI) in early life cycle of WWTP projects in the Republic of Iraq. Results of the comparison between the three techniques, MLR, ANN, and SVM, showed that best techniques used to predict three earned value indicators based on average degree of accuracy (AA%) are ANN, as degree of accuracy for the SPI was (98.93%) and CPI was (98.29%). and CSI is (95.63%).   على الرغم من صعوبة التقدير في المراحل المبكرة من عمر المشاريع في ظل محدودية البيانات والمعلومات في مستندات المقاولة ولغرض تجاوز هذه المشكلة واتخاذ قرارات ذات دقة عالية،  فقد تم تطبيق تقنيات تقليدية وذكية  لتقدير مؤشرات القيمة المكتسبة وبدرجة دقة عالية وباقل الاخطاء، من اجل تمكين اصحاب المصلحة من التنبؤ  الدقيق بأداء الوقت وأداء الكلفة في هذه المشاريع، لهذا فقد جاء الهدف الرئيس من هذا البحث  لمقارنة دقة ثلاثة تقنيات لتقدير مؤشرات القيمة المكتسبة، وهي تقنية تحليل الانحدار المتعدد و الشبكات العصبونية الاصطناعية وتقنية اشعاع الدعم الالي لعينة البحث المنتخبة وهي مشاريع محطات معالجة مياه الصرف الصحي في جمهورية العراق، وعليه تم تطوير تسعة نماذج ذكية لتخمين مؤشر أداء الجدولة ومؤشر أداء الكلفة ومؤشر الأداء الإجمالي للمشروع. جُمعت البيانات والمعلومات في هذه الدراسة من مشاريع محطات معالجة مياه الصرف الصحي في العراق. وكان عدد هذه المشاريع التي استخدمت في بناء النماذج الذكية (32) مشروعاً، وقد تم جمع هذه البيانات باستخدام أساليب مختلفة مثل الاستبيان والبيانات التاريخية ودراسة العمل والمعايشة الميدانية.  تم تطوير تسعة نماذج للتنبؤ الذكي باستخدام ثلاث تقنيات وهي الشبكات العصبونية الاصطناعية (Artificial Neural (Networks Models (ANNM))متجه الاشعاع الالي (Support Vector Machines Models (SVMM)) والانحدار الخطي المتعدد (Multiple Linear Regression Models (MLRM))، للتنبؤ بمؤشرات القيمة المكتسبة الثلاثة وهي مؤشر أداء الجدولة (SPI) ومؤشر أداء الكلفة (CPI) ومؤشر الأداء الإجمالي للمشروع (CSI) في المرحلة المبكرة من دورة حياة مشاريع محطات معالجة مياه الصرف الصحي في جمهورية العراق، واشتقت تسعة معادلات رياضية لهذه النماذج واختبرت احصائيا من خلال قيمة معامل الارتباط ومعامل التحديد ومتوسط درجة الدقة ونسبة معدل الخطأ المطلق. بينت نتائج المقارنة بين التقنيات الثلاثة MLR وANN وSVM، أن أفضل التقنيات المستخدمة للتنبؤ بمؤشرات القيمة المكتسبة الثلاثة بناءً على متوسط درجة الدقة (%AA) هي تقنية الشبكات العصبونية الاصطناعية، اذ كانت درجة الدقة لمؤشر الجدولة (98.93%) ومؤشر الكلفة (98.29%) ومؤشر الأداء الإجمالي (95.63%).

DOI

10.21608/auej.2023.217064.1381

Keywords

Wastewater treatment projects, Artificial Neural Networks, multiple linear regression, Support Vector Machines. مشاريع معالجة مياه الصرف الصحي، الشبكات العصبية الاصطناعية، الانحدار الخطي المتعدد، متجة الاشعاع الالي

Authors

First Name

Faiq

Last Name

Al-Zwainy

MiddleName

M. S.

Affiliation

Al-Nahrain University, Baghdad, Iraq

Email

faiqalzwainy@gmail.com

City

Baghdad

Orcid

https://orcid.org/my

First Name

Mohammed

Last Name

Shaban

MiddleName

-

Affiliation

Sudan University for Science and Technology, Khartoum, Sudan

Email

-

City

-

Orcid

-

First Name

Awad

Last Name

Hassan

MiddleName

-

Affiliation

Sudan University for Science and Technology, Khartoum, Sudan

Email

awadshassan@yahoo.com

City

-

Orcid

-

Volume

18

Article Issue

69

Related Issue

44187

Issue Date

2023-10-01

Receive Date

2023-07-02

Publish Date

2023-10-01

Page Start

1,009

Page End

1,029

Print ISSN

1687-8418

Online ISSN

3009-7622

Link

https://jaes.journals.ekb.eg/article_324467.html

Detail API

https://jaes.journals.ekb.eg/service?article_code=324467

Order

324,467

Type

Original Article

Type Code

706

Publication Type

Journal

Publication Title

Journal of Al-Azhar University Engineering Sector

Publication Link

https://jaes.journals.ekb.eg/

MainTitle

DEVELOPMENT INTELLIGENT PREDICTION MODELS FOR EARNED VALUE INDICATORS IN WASTEWATER TREATMENT PLANTS PROJECTS

Details

Type

Article

Created At

24 Dec 2024