Federated Learning Enabled IDS for Internet of Things on non-IID Data
Last updated: 03 Jan 2025
10.21608/ijicis.2024.262382.1315
Federated Learning, Cyber Security, Intrusion Detection, Deep learning, Distributed Learning
Omar
Elnakib
Samy
Computer Systems, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, Egypt
omar.elnakib@cis.asu.edu.eg
0000-0002-2811-4232
Eman
shaaban
Head of Department of Computer Systems, Faculty of Computer and Information Sciences, Ain shams university
eman.shaaban@cis.asu.edu.eg
Cairo
0000-0001-8889-3242
Mohamed
Mahmoud
Professor, Dept. of Computer Science, College of Engineering Department of Electrical and Computer Engineering, Tennessee Technological University, USA
mmahmoud@tntech.edu
0000-0002-8719-501X
Karim
Emara
5 El-Khalyfa El-Ma'moun Street Abbasia
karim.emara@cis.asu.edu.eg
Cairo
0000-0002-7318-9049
24
1
46955
2024-03-01
2024-01-13
2024-03-01
13
28
1687-109X
2535-1710
https://ijicis.journals.ekb.eg/article_347142.html
https://ijicis.journals.ekb.eg/service?article_code=347142
347,142
Original Article
494
Journal
International Journal of Intelligent Computing and Information Sciences
https://ijicis.journals.ekb.eg/
Federated Learning Enabled IDS for Internet of Things on non-IID Data
Details
Type
Article
Created At
23 Dec 2024