Training YOLOv5s under Field-survey Conditions to Detect The Infections of Maize Plants in Real-time
Last updated: 01 Jan 2025
10.21608/agro.2024.281521.1422
YOLOv5, Plant infections, Real-time, Machine Learning, maize
ELSAYED
Ali
A. E.
agriculture engineering research Institute, Dokki, Giza , Egypt
elsayed.ali@arc.sci.eg
Giza
0000-0003-1839-7571
Ahmed
Aboelyousr
G.
Department of Agricultural Engineering, Faculty of Agriculture, Aswan University, Egypt
ahmed.gahmed@agr.aswu.edu.eg
Aswan
Hassan
Tarabye
H.
Department of Agricultural Engineering, Faculty of Agriculture, Aswan University, Egypt
htarabye@agr.aswu.edu.eg
46
1
47591
2024-04-01
2024-04-06
2024-04-01
51
60
0379-3575
2357-0288
https://agro.journals.ekb.eg/article_355650.html
https://agro.journals.ekb.eg/service?article_code=355650
355,650
Original Article
17
Journal
Egyptian Journal of Agronomy
https://agro.journals.ekb.eg/
Training YOLOv5s under Field-survey Conditions to Detect The Infections of Maize Plants in Real-time
Details
Type
Article
Created At
22 Dec 2024