Beta
384509

Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations

Article

Last updated: 05 Jan 2025

Subjects

-

Tags

-

Abstract

In this study, a new form of a quadratic spline is obtained, where the coefficients are
determined explicitly by variational methods. Convergence is studied and parity
conservation is demonstrated. Finally, the method is applied to solve integral equations.

DOI

10.1186/s42787-020-00091-7

Keywords

Quadratic spline, Fredholm-Volterra integral equations, fractional differential equations

Authors

First Name

Alberto

Last Name

Ferrari

MiddleName

José

Affiliation

Consejo Nacional de Investigaciones Científicas y Técnicas, 27 de febrero 210 bis, S2000 Rosario, Argentina

Email

-

City

-

Orcid

-

First Name

Luis

Last Name

Lara

MiddleName

Pedro

Affiliation

Consejo Nacional de Investigaciones Científicas y Técnicas, 27 de febrero 210 bis, S2000 Rosario, Argentina

Email

-

City

-

Orcid

-

First Name

Eduardo

Last Name

Marcus

MiddleName

Adrian Santillan

Affiliation

-

Email

-

City

-

Orcid

-

Volume

28

Article Issue

1

Related Issue

50535

Issue Date

2020-06-01

Receive Date

2024-10-07

Publish Date

2020-06-01

Page Start

1

Page End

14

Print ISSN

1110-256X

Online ISSN

2090-9128

Link

https://joems.journals.ekb.eg/article_384509.html

Detail API

https://joems.journals.ekb.eg/service?article_code=384509

Order

384,509

Publication Type

Journal

Publication Title

Journal of the Egyptian Mathematical Society

Publication Link

https://joems.journals.ekb.eg/

MainTitle

Convergence analysis and parity conservation of a new form of a quadratic explicit spline with applications to integral equations

Details

Type

Article

Created At

21 Dec 2024