Beta
381157

Eigenvalues for the Steklov problem via Ljusternic– Schnirelman principle

Article

Last updated: 31 Dec 2024

Subjects

-

Tags

-

Abstract

This paper deals with the existence of nondecreasing sequence of nonnegative eigenvalues
for the systems
divðaðxÞjrujp2ruÞ ¼ bðxÞjujp2u in X;
jrujp2 @u
@n ¼ kcðxÞjujp2u on @X; (
by using the Ljusternic–Schnirelman principle, where X is a bounded domain in RN(N P2).

DOI

10.1016/j.joems.2012.10.006

Keywords

p-Laplacian systems, Eigenvalue problems, Variational methods, Ljusternic–Schnirelman principle

Authors

First Name

G.A.

Last Name

Afrouzi

MiddleName

-

Affiliation

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

Email

-

City

-

Orcid

-

First Name

M.

Last Name

Mirzapour

MiddleName

-

Affiliation

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

Email

-

City

-

Orcid

-

First Name

S.

Last Name

Khademloo

MiddleName

-

Affiliation

Faculty of Basic Sciences, Babol University of Technology, Babol, Iran

Email

-

City

-

Orcid

-

Volume

21

Article Issue

1

Related Issue

50461

Issue Date

2013-04-01

Receive Date

2024-09-23

Publish Date

2013-04-01

Page Start

16

Page End

20

Print ISSN

1110-256X

Online ISSN

2090-9128

Link

https://joems.journals.ekb.eg/article_381157.html

Detail API

https://joems.journals.ekb.eg/service?article_code=381157

Order

381,157

Publication Type

Journal

Publication Title

Journal of the Egyptian Mathematical Society

Publication Link

https://joems.journals.ekb.eg/

MainTitle

Eigenvalues for the Steklov problem via Ljusternic– Schnirelman principle

Details

Type

Article

Created At

21 Dec 2024