Enhancing Geological Interpretation Efficiency and Accuracy Using Convolutional Neural Networks: A Case Study from Balsam Field, Nile Delta
Last updated: 29 Dec 2024
10.21608/sjfsmu.2024.317987.1008
Convolutional neural network (CNN), Borehole image facies, Qawasim Formation, Machine Learning, Nile Delta
Ali
Abdel Baset
El Wastani Petroleum Company (WASCO), Cairo, Egypt
ali.abdelbaset@outlook.com
Moahmed
Abu -El Hassan
Mahmoud
Geology Department, faculty of Science, Menoufia University
abouelhassanm@yahoo.com
Mohamed
Abu-Hashish
Farouk
Geology Department, Faculty of Science, Menoufia University
mfarouk64@gmail.com
28
2
48982
2024-12-01
2024-09-05
2024-10-12
39
48
3062-469X
3009-6367
https://sjfsmu.journals.ekb.eg/article_383696.html
https://sjfsmu.journals.ekb.eg/service?article_code=383696
383,696
Original Article
3,141
Journal
Scientific Journal of Faculty of Science, Menoufia University
https://sjfsmu.journals.ekb.eg/
Enhancing Geological Interpretation Efficiency and Accuracy Using Convolutional Neural Networks: A Case Study from Balsam Field, Nile Delta
Details
Type
Article
Created At
21 Dec 2024