Beta
311701

UNIQUENESS OF CERTAIN DIFFERENTIAL POLYNOMIALS WITH FINITE WEIGHT

Article

Last updated: 05 Jan 2025

Subjects

-

Tags

-

Abstract

Some fundamental terms in Nevanlinna's value distribution theory $m(r, f)$, $N(r, f)$,
$T(r, f)$, etc. and let $f(z)$ and $g(z)$ be two non-constant meomorphic functions, $P(f)$ and $P(g)$ be a polynomials of degree $m$, whose zeros and poles are of multiplicities atleast $s$, where $s$ is a positive integer. and let $n$, $k$ be two positive integers with $s(n+m)>9k+14$. If $m\geq{2}$ and $\delta(\infty,f)>\dfrac{2+d}{n+m}$, if $m=1$ and $\Theta(\infty,f)>\dfrac{2+d}{n+1}$, $[f^{n}P(f)]^{(k)}$ and $[g^{n}P(g)]^{(k)}$ share $1(1,0)$, then either $[f^{n}P(f)]^{(k)} [g^{n}P(g)]^{(k)}\equiv{1}$ or $f(z)$ and $g(z)$ satisfy the algebraic equation $R(f,g)=0$, where
\begin{equation*}
R(\omega_{1},\omega_{2})=\omega^{m}_{1}(a_{m}\omega^{m}_{1}+a_{m-1}\omega^{m-1}_{1}+...+a_{0})-\omega^{m}_{2}(a_{m}\omega^{m}_{2}+a_{m-1}\omega^{m-1}_{2}+...+a_{0}).
\end{equation*}
Let $f(z)$ and $g(z)$ be two non-constant entire functions with satisfying inequality $n>5k+6m+7$. The present paper deals with the study of uniqueness of certain differential polynomials with the notion of weighted sharing. The results of the paper improve and generalize the results of Rajeshwari S, Husna V and Nagarjun V.\cite{06}. We have also exhibited a series of examples satisfying our results and provided some other examples showing the sharpness of one of our results.

DOI

10.21608/jfca.2023.203836.1009

Keywords

Nevanlinna theory, Value-Sharing, Meromorphic Functions, Entire functions Differential Polynomials

Authors

First Name

Jayarama

Last Name

H R

MiddleName

-

Affiliation

Presidency Unviersity, Bengaluru Presidency Unviersity

Email

jayjayaramhr@gmail.com

City

Bengaluru

Orcid

-

First Name

Naveenkumar

Last Name

S. H

MiddleName

-

Affiliation

Assistant Professor Presidency University Bengaluru

Email

naveenkumarnew1991@gmail.com

City

Bengaluru

Orcid

-

First Name

Chaithra

Last Name

C. N

MiddleName

-

Affiliation

Presidency Unviersity, Bengaluru

Email

chinnuchaithra15@gmail.com

City

-

Orcid

-

Volume

14

Article Issue

2

Related Issue

39573

Issue Date

2023-07-01

Receive Date

2023-04-03

Publish Date

2023-07-01

Page Start

1

Page End

13

Print ISSN

2090-584X

Online ISSN

2090-5858

Link

https://jfca.journals.ekb.eg/article_311701.html

Detail API

https://jfca.journals.ekb.eg/service?article_code=311701

Order

311,701

Type

Regular research papers

Type Code

2,646

Publication Type

Journal

Publication Title

Journal of Fractional Calculus and Applications

Publication Link

https://jfca.journals.ekb.eg/

MainTitle

UNIQUENESS OF CERTAIN DIFFERENTIAL POLYNOMIALS WITH FINITE WEIGHT

Details

Type

Article

Created At

18 Dec 2024