ARTIFICIAL INTELLIGENCE TO EVALUATE THE SHORT-TERM PROGRESS OF DEVICE ASSISTED SCOLIOSIS THERAPY ON THE EXAMPLE OF FED METHOD
Last updated: 28 Dec 2024
10.21608/dusj.2020.205877
Paula
Schumann
Institute of Biomedical Engineering, Technische Universität Dresden, Germany
Andreas
Heinke
Institute of Biomedical Engineering, Technische Universität Dresden, Germany
Thurid
Jochim
Institute of Biomedical Engineering, Technische Universität Dresden, Germany
Tilman
Lieberknecht
Institute of Biomedical Engineering, Technische Universität Dresden, Germany
Jenny
Nisser
Institute of physiotherapy, University Hospital Jena, Germany
Steffen
Derlien
Institute of physiotherapy, University Hospital Jena, Germany
Zbigniew
Śliwiński
Institute of physiotherapy, UJK Kielce, Poland
Hagen
Malberg
Institute of Biomedical Engineering, Technische Universität Dresden, Germany
Grzegorz
Śliwiński
Institute of Biomedical Engineering, Technische Universität Dresden, Germany
3
2
28911
2020-09-01
2021-11-21
2020-09-01
33
45
2636-3046
2636-3054
https://dusj.journals.ekb.eg/article_205877.html
https://dusj.journals.ekb.eg/service?article_code=205877
4
Review articles
1,770
Journal
Delta University Scientific Journal
https://dusj.journals.ekb.eg/
ARTIFICIAL INTELLIGENCE TO EVALUATE THE SHORT-TERM PROGRESS OF DEVICE ASSISTED SCOLIOSIS THERAPY ON THE EXAMPLE OF FED METHOD
Details
Type
Article
Created At
23 Jan 2023