Subjects
-Tags
Electrical Engineering : Electric power generation, transmission, dist…d generation and micro grid, communication, control engineering, etc.
Abstract
Cities with high population density have a serious problem with traffic congestion. Intelligent transportation systems try to overcome these problems by finding smart ways to detect traffic congestion. One of the essential issues in these systems is selecting the appropriate features to detect traffic congestion. Most of the current methods utilize motion or texture features only, which have their limitations. In this paper, a deep neural network (DNN), which has two input paths, is proposed for traffic congestion recognition. It handles the evolution of motion as well as texture through its two inputs simultaneously via Long Short-Term Memory (LSTM) layers. Gaussian noise layers are used to increase the generalization ability of the DNN and to enable training on small datasets without over-fitting. Experimental results applied to the UCSD and NU videos datasets assert the robustness of the proposed method. It achieves an accuracy of 98 % which is high in comparison to the state-of-the-art methods.
DOI
10.21608/svusrc.2022.133083.1046
Keywords
traffic congestion, LSTM, Multi-Stream network
Authors
Affiliation
Faculty of Energy Engineering - Aswan University
Email
eng_moh124@yahoo.com
Link
https://svusrc.journals.ekb.eg/article_234884.html
Detail API
https://svusrc.journals.ekb.eg/service?article_code=234884
Type
Original research articles
Publication Title
SVU-International Journal of Engineering Sciences and Applications
Publication Link
https://svusrc.journals.ekb.eg/
MainTitle
Robust Traffic Congestion Recognition in Videos Based on Deep Multi-Stream LSTM