Subjects
-Tags
Electrical Engineering, Computer Engineering and Electrical power and machines engineering.
Abstract
The paper presents an on-line optimal artificial neural network (ANN)- based controller for simplified order power systems to improve the dynamic response under different operating conditions. The original 13th order power system is reduced to 5th order model. The basic feature of the proposed ANN controller is that it consists of two neural networks, one of them (ANN1) maps the optimal control process at different loading conditions and the other (ANN2) maps the feedback control to produce the required control action signal. The ANN1 is trained using input/output pairs of data which are collected from the optimal control of the reduced order model of power system at different loading conditions The ANN2 parameters are adapted on-line through the ANN1 according to loading conditions. The digital simulation results proved the high performance of the synchronous generator using the proposed ANN controller in terms of fast response and less undershot/overshot under different operating conditions. A comparison between the off-line fixed parameters optimal controller and the proposed ANN controller validates the effectiveness and reliability of the ANN controller.
DOI
10.21608/jesaun.2006.110083
Keywords
Reduction Technique, Power systems, optimal controller, ANN controller
Authors
MiddleName
-Affiliation
Electrical Engineering Department, Faculty of Engineering, Assiut
University, Assiut, Egypt
Email
-City
-Orcid
-MiddleName
-Affiliation
Electrical Engineering Department, Faculty of Engineering, Assiut
University, Assiut, Egypt
Email
-City
-Orcid
-MiddleName
-Affiliation
Electrical Engineering Department, Faculty of Engineering, Assiut
University, Assiut, Egypt
Email
-City
-Orcid
-Link
https://jesaun.journals.ekb.eg/article_110083.html
Detail API
https://jesaun.journals.ekb.eg/service?article_code=110083
Publication Title
JES. Journal of Engineering Sciences
Publication Link
https://jesaun.journals.ekb.eg/
MainTitle
AN ON-LINE OPTIMAL ARTIFICIAL NEURAL NETWORK-BASED CONTROLLER FOR SIMPLIFIED ORDER POWER SYSTEMS