Beta
246309

An Application of Linear Programming Discriminated Analysis for Classification

Article

Last updated: 04 Jan 2025

Subjects

-

Tags

الإحصاء والرياضة والتأمين

Abstract

The goal of this study is to compare linear discrimination analysis and discriminated analysis with linear programming (MMD) (Min. Sum of Deviation) in order to find the best model for classifying observations into their correct groups with the lowest possible classification error and highest classification accuracy. According to the findings of the study, discriminated analysis using linear programming differs from linear discriminated analysis in data classification because it produces the lowest error rate and the highest classification accuracy rate, and it does not require the linear discriminated analysis assumptions.

DOI

10.21608/caf.2022.246309

Keywords

Discriminated analysis, discriminated analysis using mathematical programming, corporate bankruptcy, data classification

Authors

First Name

maie

Last Name

kamel

MiddleName

-

Affiliation

Faculty of commerce, Tanta University

Email

maie.kamel@commerce.tanta.edu.eg

City

-

Orcid

0000000276505844

First Name

Hanaa

Last Name

Salem

MiddleName

-

Affiliation

کلية التجارة جامعة طنطا

Email

hanaa_salem@commerce.tanta.edu.eg

City

-

Orcid

-

First Name

Waleed Abdelgawad

Last Name

Abdelgawad

MiddleName

-

Affiliation

تاهيلي دکتوراه قسم الاحصاء کلية التجارة جامعة طنطا

Email

walidabdelgwad2@gmail.com

City

-

Orcid

-

Volume

42

Article Issue

2

Related Issue

34860

Issue Date

2022-06-01

Receive Date

2021-09-27

Publish Date

2022-06-01

Page Start

89

Page End

105

Print ISSN

1110-4716

Online ISSN

2682-4825

Link

https://caf.journals.ekb.eg/article_246309.html

Detail API

https://caf.journals.ekb.eg/service?article_code=246309

Order

14

Publication Type

Journal

Publication Title

التجارة والتمويل

Publication Link

https://caf.journals.ekb.eg/

MainTitle

An Application of Linear Programming Discriminated Analysis for Classification

Details

Type

Article

Created At

22 Jan 2023