The present work aims to decrease friction coefficient of rubber soles sliding against ceramic floorings. Introducing holes of different diameters in the cylindrical protrusions in the rubber surfaces was proposed. Experiments were carried out to evaluate the performance of the proposed protrusions in increasing friction coefficient at dry and contaminated floorings.
It was found that, at dry sliding, friction coefficient significantly increased up to maximum then decreased with increasing number of holes. The highest friction values were observed for 1.5 mm diameter holes, while the lowest values were displayed by 3.0 mm diameter holes. In the presence of water on the flooring, it was shown that as the hole diameter increased, the volume of the water leaked out the contact area increased. The detergent layer formed on the contact area caused drastic friction decrease. The highest friction value did not exceed 0.13 which confirmed the severity of walking in the presence of detergent. When sand particles was covering sliding surfaces, the effect of hole diameter was much higher than number of holes. When oil contaminated the sliding surfaces, friction coefficient significantly increased at single hole protrusion. The single hole was more pronounced than the effect of hole diameter due to the strong adhesion of oil into the rubber and ceramic surfaces. Water/oil dilution contaminated ceramic flooring showed the highest friction coefficient (0.26) at single hole of 1.5 mm diameter. Further increase in the number of holes decreased friction values. Presence of sand in oil contaminated ceramic flooring did not increased friction coefficient, where the highest value did not exceed 0.2. Sliding against water/oil dilution and sand contaminated ceramic flooring represented relatively higher friction values. Protrusions perforated by three holes of 2.5 mm diameter showed the highest friction followed by single hole of 3.0 mm diameter and four holes of 1.5 mm diameter.