A Novel Scalable and Effective Partitioning Approach for Big Data Reduction
Last updated: 04 Jan 2025
10.21608/ijci.2019.35122
Big Data, Data mining, Data Reduction, Instance Selection, Data Partitioning
M.
Malhat
G.
Computer Science dept., Faculty of computers and Information, Menoufia University, Egypt
m.gmalhat@yahoo.com
0000-0002-0136-4805
M.
Elmenshawy
Computer Science dept., Faculty of Computers and Information, Menofia University, Egypt
mohamed.elmenshawy@ci.menofia.edu.eg
Hamdy
Mousa
Faculty of Computer and Information Menoufia University
hamdimmm@hotmail.com
0000-0001-9503-9124
A.
Elsisi
B.
Computer Science dept., Faculty of computers and Information, Menofia University, Egypt
ashrafelsisi@hotmail.com
6
1
5795
2019-01-01
2018-08-01
2019-01-01
9
19
1687-7853
2735-3257
https://ijci.journals.ekb.eg/article_35122.html
https://ijci.journals.ekb.eg/service?article_code=35122
2
Original Article
877
Journal
IJCI. International Journal of Computers and Information
https://ijci.journals.ekb.eg/
A Novel Scalable and Effective Partitioning Approach for Big Data Reduction
Details
Type
Article
Created At
22 Jan 2023