Subjects
-Tags
-Abstract
A nonlinear finite element model is provided for the thermal post buckling and linear flutter behavior of composite panels. Panel subjects to combined aerodynamic and thermal loads. The governing equations are derived using the classical plate theory and the principle of virtual work. The effect of large deflection is included in the formulation through the von Kármán nonlinear strain-displacement relations. To account for the temperature dependence on material properties, the thermal strain is stated as an integral quantity of the thermal expansion coefficient with respect to temperature. The aerodynamic pressure is modeled using the quasi-steady first order piston theory. The Newton–Raphson iteration method is employed to obtain the nonlinear aero-thermal post-buckling deflections, and a frequency-domain solution is presented to predict the critical dynamic pressure at different elevated temperatures. Finally, numerical results are provided to depict the optimum lamination scheme in order to maximize the aero-thermal stability of such panels. The optimum solution is obtained by Genetic Algorithms.
DOI
10.21608/asat.2011.23036
Keywords
Thermal buckling, Supersonic panel flutter, Nonlinear FEM, Genetic Algorithms
Authors
MiddleName
-Affiliation
Egyptian Armed Forces, Egypt.
Email
-City
-Orcid
-MiddleName
-Affiliation
Professor, Modern Academy in Maadi, Egypt.
Email
-City
-Orcid
-Affiliation
Assistant Professor, Aeronautical Department, Emirates Aviation College, Dubai, UAE.
Email
-City
-Orcid
-Affiliation
Egyptian Armed Forces, Egypt.
Email
-City
-Orcid
-Article Issue
AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 14 – May 24 - 26, 2011
Link
https://asat.journals.ekb.eg/article_23036.html
Detail API
https://asat.journals.ekb.eg/service?article_code=23036
Publication Title
International Conference on Aerospace Sciences and Aviation Technology
Publication Link
https://asat.journals.ekb.eg/
MainTitle
Optimum Nonlinear Response of Composite Panels Subjected to Aerodynamic and Thermal Loadings