Beta
21888

Smart Identification of Overlapping Strip Pairs/Regions for Optimized LiDAR System Calibration

Article

Last updated: 04 Jan 2025

Subjects

-

Tags

-

Abstract

Recently, laser scanning systems, onboard airborne and terrestrial mobile mapping systems, have been established as a leading technology for collecting high density 3D information from an object's surface. The availability of generated surface models is very important for various industrial, military, environmental, and public applications. The accuracy of the derived point cloud coordinates from a LiDAR system is affected by inherent systematic and random errors. The impact of random errors depends on the precision of the system's measurements, which comprise position and orientation information from the GPS/INS unit, mirror angles, and ranges. On the other hand, systematic errors are mainly caused by biases in the mounting parameters (i.e., lever arm offset and boresight angles) relating the system components as well as biases in the system measurements (e.g., ranges and mirror angles). In order to ensure the geometric quality of the collected point cloud, the LiDAR systems should undergo a rigorous calibration procedure to estimate the system parameters that minimize the discrepancies between conjugate surface elements in overlapping LiDAR strips. The main objective of this paper is to look into an existing LiDAR system calibration technique, which is based on manual selection of overlapping regions between LiDAR strips and how to increase the efficiency of this technique by automatic selection of appropriate overlapping strip pairs, which should achieve the minimum optimal flight configuration that maximizes the impact of the discrepancies among conjugate surface elements in overlapping strips as well as automatic selection of regions within the appropriate overlapping strip pairs. The methodology of the proposed technique can be summarized as follows: first, the LiDAR strip pairs are grouped based on the flight configuration; second, appropriate overlapping strip pairs from each group is automatically selected; third, regions within the appropriate overlapping strip pairs are automatically selected based on their angles (slopes and aspects) and distribution; finally, the calibration procedure is applied. The experimental results have shown that the quality of the estimated parameters using the automatic selection are quite comparable to the estimated parameters using the manual selection while the proposed method is fully automated, and much faster.

DOI

10.21608/asat.2013.21888

Keywords

LIDAR, laser scanning, calibration

Authors

First Name

E.

Last Name

Hamza

MiddleName

-

Affiliation

Dep. of Geomatics Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.

Email

-

City

-

Orcid

-

First Name

A.

Last Name

Habib

MiddleName

-

Affiliation

Dep. of Geomatics Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.

Email

-

City

-

Orcid

-

Volume

15

Article Issue

AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 15 – May 28 - 30, 2013

Related Issue

4183

Issue Date

2013-05-01

Receive Date

2018-12-13

Publish Date

2013-05-01

Page Start

1

Page End

16

Print ISSN

2090-0678

Online ISSN

2636-364X

Link

https://asat.journals.ekb.eg/article_21888.html

Detail API

https://asat.journals.ekb.eg/service?article_code=21888

Order

12

Type

Original Article

Type Code

737

Publication Type

Journal

Publication Title

International Conference on Aerospace Sciences and Aviation Technology

Publication Link

https://asat.journals.ekb.eg/

MainTitle

Smart Identification of Overlapping Strip Pairs/Regions for Optimized LiDAR System Calibration

Details

Type

Article

Created At

22 Jan 2023