Beta
233841

PREDICTION OF THE WEAR RATES OF EPOXY-BASED NANOCOMPOSITES USING ARTIFICIAL NEURAL NETWORK APPROACH

Article

Last updated: 03 Jan 2025

Subjects

-

Tags

-

Abstract

The present investigation aims to use the artificial neural networks (ANN) approach to develop models that could be used to predict the wear rates of epoxy-based nanocomposites. The epoxy matrix was reinforced with different volume fractions (vol.-%) of boron carbide (BC) nanoparticles having average sizes of 50 nm. The BC nanoparticles were dispersed into the epoxy matrix using mechanical stirring technique. The wear tests were conducting under dry sliding conditions and several sliding speeds and applied loads. The developed ANN model was successfully used to predict the influence of the sliding speed, load, and BC nanoparticles volume fraction on wear rates of the epoxy/BC nanocomposites. The mean relative absolute error (MARE) of the developed ANN model was 4.27%.
 
يهدف البحث الحالي إلى استتخدام هه الشتبکات العيتبية انيتطهاعية ANN )لتطوير هماذج يمکن استتخدامها للتهب بمعدنت تکک للم تلفات الهاهومترية ذات األستتام من ماد اإليبوکستتيت تم تدعيم انيبوکستتي بحبيبات هاهومتريه حجم٪( من کربيد البورون BC ) بمتوستط حجم 50 هاهومتر باستتخدام تقهية التقليب الميکاهيکيت أجريت اختبارات التکک في ظروف اهزنق جاف وعد سترعات اهزنق وأحما مختلفةت تم استتتتخدام هموذج ANN المطور بهجاح للتهب بتأثير ستتترعة انهزنق والحم والهستتتبة الحجمية للحبيبات BC ) الهاهومترية على معدنت تکک للم تلفات الهاهومتريةت کان متوسط الخطأ اله سبي المطلق MARE )لهموذج ANN المطور 27.4٪ت

DOI

10.21608/auej.2022.233841

Keywords

Metal matrix nanocomposites, Epoxy, artificial neural network, Wear rate. الشبکات العصبية االصطناعية, االيبوکسى, المواد المؤتلفة النانومترية, معدل التآکل

Authors

First Name

Khaled

Last Name

Al Shatti

MiddleName

-

Affiliation

Members of the Training Staff, the Public Authority for Applied Education and Training, Kuwait.

Email

-

City

-

Orcid

-

Volume

17

Article Issue

63

Related Issue

33543

Issue Date

2022-04-01

Receive Date

2021-10-17

Publish Date

2022-04-01

Page Start

569

Page End

576

Print ISSN

1687-8418

Link

https://jaes.journals.ekb.eg/article_233841.html

Detail API

https://jaes.journals.ekb.eg/service?article_code=233841

Order

9

Type

Original Article

Type Code

706

Publication Type

Journal

Publication Title

Journal of Al-Azhar University Engineering Sector

Publication Link

https://jaes.journals.ekb.eg/

MainTitle

PREDICTION OF THE WEAR RATES OF EPOXY-BASED NANOCOMPOSITES USING ARTIFICIAL NEURAL NETWORK APPROACH

Details

Type

Article

Created At

22 Jan 2023