Beta
14692

APPLICATION OF MACHINE VISION FOR DETECTION OF FOREIGN MATTER IN WHEAT GRAINS

Article

Last updated: 22 Jan 2023

Subjects

-

Tags

-

Abstract

With the level of automation at every level of food production and the rates at which food is be-ing produced, it is becoming increasingly more important to have systems that can automatically detect foreign matter along the way. The color scheme could make a computer vision system very practical for foreign object detection and removal. Research at laboratory levels has demonstrated that machine vision is an effective method for clas-sification of cereal grains like wheat. Robust ma-chine vision algorithms have been developed and tested to extract morphological, color and textural features of wheat grains and dockage content. The samples used in this study were bulk images of Egyptian wheat (Sakha8) mixed with known quan-tities of barley, rice and stones (0.5%, 1.0%, 2.0% and 5%). Back propagation neural network (BPNN) and statistical classifiers were used for classifica-tion. Results of the study indicate that classification was reduced from about 97% for wheat mixed with stones to 96% for wheat mixed with rice and 93% for wheat mixed with barley (at 5.0% admix-ture).This trend indicates that the features of 1.0% foreign matter admixture started overlapping with other classes (of admixture). On the other hand, 94%, 95% and 97% of 5% barley, rice and stones admixtures (with wheat) were accurately classified using neural network classifier. Using machine vision system, the detection rate for foreign matter in otherwise clean wheat was 100% with no false positives. This detection scheme was based on a linear feature detector incorporating two orthogonal masks.

DOI

10.21608/ajs.2008.14692

Keywords

Machine vision, Neural network, For-eign matter, detection, Wheat

Authors

First Name

G.K

Last Name

Arafa

MiddleName

-

Affiliation

Agricultural Engineering Research Institute, P.O. Box 256, Nadi Elsaid St., Dokki, Giza, Egypt

Email

-

City

-

Orcid

-

First Name

Elbatawi

Last Name

I.E.

MiddleName

-

Affiliation

Agricultural Engineering Research Institute, P.O. Box 256, Nadi Elsaid St., Dokki, Giza, Egypt

Email

-

City

-

Orcid

-

Volume

16

Article Issue

2

Related Issue

3000

Issue Date

2008-09-01

Receive Date

2008-05-24

Publish Date

2008-09-01

Page Start

275

Page End

284

Print ISSN

1110-2675

Online ISSN

2636-3585

Link

https://ajs.journals.ekb.eg/article_14692.html

Detail API

https://ajs.journals.ekb.eg/service?article_code=14692

Order

4

Type

Original Article

Type Code

668

Publication Type

Journal

Publication Title

Arab Universities Journal of Agricultural Sciences

Publication Link

https://ajs.journals.ekb.eg/

MainTitle

-

Details

Type

Article

Created At

22 Jan 2023