Backgrounds: Natural remedies were used for cancer treatments, particular breast cancer. Also, the consumption of food products containing high amount of flavonoids and antioxidants had reported to lower the risk of various cancers. Bee venom (BV) and propolis were produced by honey bee. They were characterized by naturopathic formulation, affordability and containing high amount of antioxidants. Moreover, they were used safely since ancient times globally. Although that, there is no information about the synergistic or antagonistic anticancer effects of their combination. This study was designed to evaluate cytotoxic and pro-apoptotic effects of BV, propolis, and their combination on breast cancer (MCF-7) cells. Materials and Methods: As preliminary study, MCF-7 cells were treated with BV (5, 10, and 20µg/ml) and propolis (50, 150, and 450µg/ml) to specify the desired combination doses of each treatment with no anticancer effect individually. Consequently, doses of (5µg/ml BV+ 50µg/ml propolis and 5µg/ml BV+ 150µg/ml propolis) were chosen to evaluate the possible synergistic anticancer potential between them. All groups in this study were examined at 2, 4, and 12 hours intervals. The morphological changes were evaluated by acridine orange/ ethidium bromide dual fluorescent staining and Giemsa staining to reveal the formation of apoptotic bodies or nuclear condensation and cytoplasmic blebbing, respectively. DNA fragmentation assay was also carried out to record the reduction in DNA content and apoptosis. Bcl-2 expression, cytoplasmic anti-apoptotic marker, was used to prove the apoptotic properties, and autophagic cell death by florescent microscopy was evaluated also. Results: Morphological observation by inverted and florescent microscopy revealed apoptotic cell death under exposure to BV (10 and 20µg/ml) and propolis (450µg/ml). On the other hand, the results of combined treatments revealed significant morphological alterations after fluorescent and Giemsa staining. Apoptotic DNA fragmentation was clearly observed and Bcl-2 recoded significant down regulation which proved the apoptotic properties of combined treatments. Additionally, autophagic degradation results also supported the occurrence of stress on treated cells leading finally to cell death. All results of powerful anticancer potential were obvious among all combined-treated groups in dose and time dependent manner. This clear that, the combined treatments have possible synergistic effect which, propose it as potential candidates to be used in development of chemotherapy.