Beta
11107

EFFECT OF FLY-ASH AND SILICA FUME ON THE PROPERTIES OF CONCRETE EXPOSED TO HIGH TEMPERATURE

Article

Last updated: 22 Jan 2023

Subjects

-

Tags

Chemistry

Abstract

The development of high concrete temperatures could cause a number of effects that have been shown to be determined to long-term concrete performance. High concrete temperatures increase the rate of hydration, thermal stresses, the tendency for drying shrinkage cracking, permeability, and decrease of long-term concrete strengths and durability as a result of cracking. The objective of this study is to investigate the effects of using fly ash and silica fume on the strength and absorption of cement concrete and pozzolanic cement concrete in hot condition. The cement concrete and pozzolanic cement concrete specimens containing fly-ash or silica fume were first cured in water for different periods 1, 3, 7, 28, 90 and 180 days then exposed to high temperature 45oC ( maximum summer temperature in Egypt and Arabian Gulf countries) in oven for 2,8,12 and 24 hours. The effect of fly-ash and silica fume contents on the absorption capacity of concrete specimens was evaluated by measuring 48-hours absorption and volume of permeable voids. The specimens were also tested for compressive strength and moisture content. The results show an increase in the compressive strength and decrease in moisture content of cement concrete and pozzolanic cement concrete specimens with increasing both curing exposing temperature time. The absorption of these concretes decreased with time of curing and increased with exposing temperature time .The absorption of both fly-ash and silica fume cement concrete specimens decreased significantly at early stages (3-7days) of curing. While the absorption of cement concrete specimens were effected significantly by exposing temperature period, no significant change in the absorption of pozzolanic cement concretes due to increasing exposing temperature period was observed, especially after 7 days of curing. The volume of permeable voids also decreased with curing. The highest reduction in the absorption and volume of voids was observed in the fly-ash concrete specimens.

DOI

10.21608/absb.2007.11107

Keywords

Fly-ash, Silica Fume, Concrete, Blended cement, Pozzolans

Volume

18

Article Issue

Issue 1-A

Related Issue

2097

Issue Date

2007-06-01

Receive Date

2018-08-14

Publish Date

2007-06-01

Page Start

115

Page End

132

Print ISSN

1110-2535

Online ISSN

2636-3305

Link

https://absb.journals.ekb.eg/article_11107.html

Detail API

https://absb.journals.ekb.eg/service?article_code=11107

Order

16

Type

Original Article

Type Code

520

Publication Type

Journal

Publication Title

Al-Azhar Bulletin of Science

Publication Link

https://absb.journals.ekb.eg/

MainTitle

-

Details

Type

Article

Created At

22 Jan 2023