Developing a Method for Classifying Electro-Oculography (EOG) Signals Using Deep Learning
Last updated: 03 Jan 2025
10.21608/ijicis.2022.99424.1126
Human computer interface (HCI), Electro-oculogram, Deep learning, Residual network
Radwa
Hossieny
Scientific Computing Department, Faculty of Computer and Information Science, Ain shams University, Cairo, Egypt.
radwa.mohamed.std1@cis.asu.edu.eg
Qalyubia
0000-0002-0173-8918
Manal
Tantawi
Scientific Computing Department, Faculty of Computer and Information Science, Ain Shams University
manalmt@cis.asu.edu.eg
Cairo
howida
shedeed
Abdel-Fattah
Scientific Computing Department, Faculty of Computer and Information Science, Ain Shams University
dr_howida@cis.asu.edu.eg
Cairo
Mohamed
Tolba
Fahmy
Department of Scientific Computing, Faculty of Computer and Information Sciences, Ain Shams University, Cairo, 11566, Egypt
fahmytolba@cis.asu.edu.eg
0000-0003-3104-6418
22
3
36337
2022-08-01
2021-10-04
2022-08-01
1
13
1687-109X
2535-1710
https://ijicis.journals.ekb.eg/article_238897.html
https://ijicis.journals.ekb.eg/service?article_code=238897
14
Original Article
494
Journal
International Journal of Intelligent Computing and Information Sciences
https://ijicis.journals.ekb.eg/
Developing a Method for Classifying Electro-Oculography (EOG) Signals Using Deep Learning
Details
Type
Article
Created At
22 Jan 2023