Beta
11326

ANTIFUNGAL ACTIVITY OF SOME ESSENTIAL OIL EMULSIONS AND NANOEMULSIONS AGAINST FUSARIUM OXYSPORUM PATHOGEN AFFECTING CUMIN AND GERANIUM PLANTS

Article

Last updated: 03 Jan 2025

Subjects

-

Tags

Medicinal and aromatic plants Palms

Abstract

In the present investigation, the antifungal activity of essential oil emulsions and nanoemulsions of sweet basil (Ocimum basilicum L.), marjoram (Majorana hortensis Moench), peppermint (Mentha piperita L.), spearmint (Mentha spicata L.) and thyme (Thymus vulgaris L.) were evaluated against Fusarium oxysporum isolated from infested cumin and geranium plants. Essential oils were obtained by hydrodistillation and analyzed by gas chromatography. The nanoemulsion was formulated using the essential oils, non-ionic surfactant (Tween 80) and water by ultrasonication method for 30 min and characterized by particle size analyzer and transmission electron microscope. Essential oil emulsions were prepared as mentioned above without sonication. The transmission electron micrograph showed that the essential oil nanoemulsions were spherical in shape and moderately mono or di-dispersed. The droplet size was correlated well with the results obtained from droplet size analysis showing that droplets are present in the nanometer range, with particle size of less than 100 nm and were stable after 3 months of storage under room temperature (27 °C). Four concentrations of the emulsions and nanoemulsions were used to evaluate the anti-fusarium activity in vitro. The results showed that maximum inhibition against Fusarium oxysporum. f.sp. cumini was resulted by thyme essential oil nanoemulsion and emulsion at 2000 ppm and sweet basil essential oil nanoemulsion at 4000 ppm. Also, maximum inhibition against Fusarium oxysporum isolated from geranium plant resulted by thyme essential oil nanoemulsion and emulsion at 2000 ppm. All essential oil nanoemulsions exhibited higher activities compared to emulsions against fungal growth at all concentrations. Treating cumin seeds with each of the concentrations of essential oil emulsions did not affect germination, while seed germination percentage sharply decreased at high concentrations of nanoemulsions treatments. The results suggest the potential effects of thyme and sweet basil essential oil nanoemulsions as novel fungicide agents against Fusarium spp.

DOI

10.21608/sjfop.2017.11326

Keywords

Fusarium oxysporum, Essential oils, Nanoemulsions, transmission electron microscopy

Authors

First Name

M.

Last Name

Hassanin

MiddleName

M.H.

Affiliation

Plant Pathology Research Institute, Agricultural Research Center, Egypt

Email

-

City

-

Orcid

-

First Name

M.

Last Name

Abd-El-Sayed

MiddleName

A.

Affiliation

Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Center (ARC), Giza, Egypt

Email

-

City

-

Orcid

-

First Name

Mona

Last Name

Abdallah

MiddleName

A.

Affiliation

Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Center (ARC), Giza, Egypt

Email

-

City

-

Orcid

-

Volume

4

Article Issue

3

Related Issue

2139

Issue Date

2017-12-01

Receive Date

2017-11-27

Publish Date

2017-12-01

Page Start

245

Page End

258

Print ISSN

2356-7864

Online ISSN

2536-9296

Link

https://sjfop.journals.ekb.eg/article_11326.html

Detail API

https://sjfop.journals.ekb.eg/service?article_code=11326

Order

3

Type

Original Research Article

Type Code

328

Publication Type

Journal

Publication Title

Scientific Journal of Flowers and Ornamental Plants

Publication Link

https://sjfop.journals.ekb.eg/

MainTitle

ANTIFUNGAL ACTIVITY OF SOME ESSENTIAL OIL EMULSIONS AND NANOEMULSIONS AGAINST FUSARIUM OXYSPORUM PATHOGEN AFFECTING CUMIN AND GERANIUM PLANTS

Details

Type

Article

Created At

22 Jan 2023