Comparative Assessment of Several Effective Machine Learning Classification Methods for Maternal Health Risk
Last updated: 29 Dec 2024
10.21608/cjmss.2024.259490.1036
classification, accuracy, validation, Health, Confusion matrix
Md Nurul
Raihen
Department of Mathematics and Computer Science, Fontbonne University, USA
nraihen@fontbonne.edu
Saint Louis
0000-0003-2680-0658
Sultana
Akter
Department of Statistics, Western Michigan University, Kalamazoo, 49006, MI, USA
sbg2612@wmich.edu
Kalamazoo
3
1
44604
2024-04-01
2023-12-30
2024-04-01
161
176
2974-3435
2974-3443
https://cjmss.journals.ekb.eg/article_340561.html
https://cjmss.journals.ekb.eg/service?article_code=340561
340,561
Original Article
2,545
Journal
Computational Journal of Mathematical and Statistical Sciences
https://cjmss.journals.ekb.eg/
Comparative Assessment of Several Effective Machine Learning Classification Methods for Maternal Health Risk
Details
Type
Article
Created At
29 Dec 2024