Beta
314847

Comparative Study Between Parametric and Non-Parametric Estimation for the Normal Density Function

Article

Last updated: 05 Jan 2025

Subjects

-

Tags

-

Abstract

A comparative study between parametric and non-parametric estimation for the probability density function (pdf) is done. The parametric method depends on additional information (or assumptions) about the form of the pdf. A comparison between the two estimates is done using two measures of efficiency, namely, the mean superior of absolute error and the Mean Integrated Square Error (MISE). The Maximum Likelihood (ML) Method and the Kernel method are used to obtain an estimate of the pdf of the normal distribution. The Gaussian and Epanechinkov Kernels are used in the non-parametric case. Although the best conditions of non-parametric estimation are applied, the results showed that the parametric method of exam estimation reduces the approximate MISE of the estimator to 42% (or less) of that of the non-parametric method. The relative efficiency of ML estimator improves with any increase in the sample size. The estimator will be more efficient in the case of one unknow parameter.

DOI

10.21608/esju.1993.314847

Keywords

Parametric Estimation, Maximum likelihood estimator, Non-Parametric Estimation, Kernel Estimator, Gaussin Kernel, Epanechnikov Kernel, Window Width

Authors

First Name

Tarik

Last Name

Amira

MiddleName

A.

Affiliation

-

Email

-

City

-

Orcid

-

Volume

37

Article Issue

2

Related Issue

43176

Issue Date

1993-12-01

Receive Date

2023-08-28

Publish Date

1993-12-01

Page Start

353

Page End

369

Print ISSN

0542-1748

Online ISSN

2786-0086

Link

https://esju.journals.ekb.eg/article_314847.html

Detail API

https://esju.journals.ekb.eg/service?article_code=314847

Order

10

Type

Original Article

Type Code

1,914

Publication Type

Journal

Publication Title

The Egyptian Statistical Journal

Publication Link

https://esju.journals.ekb.eg/

MainTitle

Comparative Study Between Parametric and Non-Parametric Estimation for the Normal Density Function

Details

Type

Article

Created At

28 Dec 2024