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Abstract:

A parametric inference of point and interval estimates for inverted
exponentiated Rayleigh distribution with general progressive Type-II
censoring scheme is studied using both classical and Bayesian estimation.
The maximum likelihood method is used for estimating the unknown
two-parameter inverted exponentiated Rayleigh distribution and some
lifetime parameters such as survival and hazard rate functions in presence
of general progressive Type-ll censoring sampling. The approximate
confidence intervals through Fisher information matrix, highest posterior
density credible intervals for the two-parameter inverted exponentiated
Rayleigh distribution, and any function of them, are constructed. In
addition, Bayesian estimates of the unknown parameters are computed
using two different loss functions squared error loss and linear exponential
loss functions. A Markov Chain Monte Carlo method technique is applied
to carry out Bayesian estimation procedure. Finally, a numerical simulation
is carried out to assess the performance of the proposed methods and real
data is analyzed using the suggested inference methods.

Keywords: General progressive Type Il censoring scheme, Inverted
exponentiated Rayleigh distribution, Maximum likelihood estimation,

Bayesian estimation, Markov Chain Monte Carlo.
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1 Introduction

Statistical analysis plays a significant role in practical applications such
as engineering, medical, economic, agricultural, and other fields. No
scientific study is complete without performing statistical analysis to
support the obtained results. In practice, there are challenges in obtaining
the life times of all units in an experiment for several reasons, including the
long lifespan of the units, financial costs, and the loss of some experimental
units due to incidental causes. Thus, the concept of making statistical
inferences using incomplete samples has become a very important topic in
statistics in general, and particularly in life studies.

There are many strategies in reliability studies and life tests to address
such challenges, such as the censoring data for units under natural
conditions. Censoring can be applied based on a prefixed time or prefixed
number of failures or sometimes a combination of both prefixed time and
number of failures. Depending on these criteria, there are different types of
censoring schemes. Among the most common censoring systems in
practical experiments are Type-l censoring and Type-Il censoring. Both
Type-1 and Type-ll censoring schemes have certain disadvantages. In
Type-1 censoring, may get very few failures or the number of failures may
be zero, while in Type-Il censoring, the experimental time may be very
large. Therefore, estimating the unknown parameters can not be done
efficiently, Lawless (2011). To enable the experiment designer to remove
some units from the life test at a specific time during the experiment,
aiming to accelerate the test or reduce time and costs, another type of
censoring was introduced, known as progressive censoring, such that the

experiment designer can remove some units at pre-specified time points
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(progressive Type-I) or remove units at each failure (progressive Type-II)
But there is a major drawback of progressive Type-1l censoring scheme
that it may take a large time to complete an experiment.

General progressive Type-Il censoring (GPTIIC) scheme is a useful and
more general scheme in which a specific fraction of individuals at risk may
be removed from the study at each of several ordered failure times. It
generalizes the progressive censoring scheme. This scheme allows
removing surviving or live units from the experiment at various stages is an
attractive feature as it will potentially save a lot for the experiment designer
in terms of cost and time. This scheme of censoring was generalized by
Balakrishnan and Sandhu (1996) as follows: At time zero, n randomly
selected units are placed on a life test; the first r failure times,
X(1), X(2), .-+, X() are not observed; at the time of (r+ 1) —th, R4
units of surviving units are removed from the test randomly; at the time of
(r+2)—th, R.., units of (n—2—r—R,,,) surviving units are
removed from the test randomly and so on. Finally, at the time of the m-th
failure, the test is terminated and the remaining R,, (R,,=n—m —
R,.1 —Ry4yp—...—R,,_1) surviving units are removed from the test.
Therefore, xq11) < Xg42) <...< Xy are the lifetimes of completely
observed units to fail, and R,,;,R;45,..., R, are the numbers of units
removed from the test at these failure times. The R;’s, m and r are
pre-specified integers which must satisfy the conditions: 0 <r <m <
n0<R, <n—i, for i=r+1,....m—1. The resulting (m—r)
ordered values Xxi1y, X(r42y,---, Xcmy are referred to as GPTIIC. The

likelihood function, in this case, is given by
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L(0) = C[F(xgan)] [T s1 f @)1 = F(x))]", 1)
where
C=) -, 0= Ri—j+ 1),
C is a constant which doesn’t depend on parameters.

There are some special cases for which the GPTIIC can reduces to other
censoring types If r =0, R; >0,i=r+1,...,m—1, then m < n, the
GPTIIC scheme reduces to the progressive Type-lIl censoring scheme. If
r=0and R; =0, for i=r+1,....m—1, then R,, =n—m, this
scheme is reduces to conventional Type-Il censoring scheme. If r = 0 and
R; =0, fori=r+1,...,m, then m = n, this scheme is reduces to the
case of no censoring (complete sample case), where all n usual are
observed. If r#0 and R; =0, fori=r+1,...,m—1, then R,,, =n —
m, which corresponds to the case of Type-11 doubly censored sample.

Many authors have been discussed inference under GPTIIC scheme
using different lifetime distributions, among others, Kang and Cho (1997)
obtained the approximate maximum likelihood estimator (AMLE) of the
scale parameter of the one parameter exponential distribution under
GPTIIC sample. Fernandez (2004) derived the maximum likelihood (ML)
estimation and Bayesian estimation for exponential parameters with
GPTIIC. Estimation problems for Burr XII and Rayleigh distributions were
studied in Kim (2006) and Kim and Han (2009) using GPTIIC schemes.
Abd-Elrahman and Sultan (2007) discussed the problem of estimating the
parameters and reliability function of the two-parameter Weibull model on
the basis of a GPTIIC sample by using ML estimation and Bayesian
approaches. Soliman (2008) derived the maximum likelihood estimators

(MLEs) and Bayesian estimators of the parameters as well as some survival
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time parameters for Pareto model based on GPTIIC scheme. More details
on GPTIIC can be found in EI-Din et al. (2014), Jang et al. (2014), Xiuyun
and Zaizai (2016), Abu-Moussa and EI-Din (2018), Ma and Gui (2019),
Wang and Gui (2021) and Lv et al. (2024).

This paper, discusses the problem of parameters estimation using
inverted exponentiated Rayleigh (IER) distribution under GPTIIC scheme.
This distribution was introduced in the literature by Ghitany et al. (2014)
and it is a particular member of a general class of inverse exponentiated
distribution. In reliability and life testing, IER distribution finds wide
application in analyzing data from experiments across various fields, such
as physics, medicine, biology, and engineering science. The probability
density function (PDF), cumulative distribution function (CDF), reliability
function (SF), and hazard rate function (HF) of a lifetime random variable
X has IER distribution with shape parameter 9 and scale parameter 6 are

given, respectively, by
6 6
f(x;9,0) =290x3e Z(1—ex2)? 1, x>0, 9,06>0, (2)
6
F(x;9,0) =1— (1 —e %?)?, x>0, 9,6>0 (3)

&)
S(x;9,0) = (1 —e )Y, x>0, 9,0>0, (4)
and

(2] (2]
H(x;9,0) =290x3e 2(1—e )71, x>0, 9,6>0. (5

The plots of PDF and HF with various values of parameters are shown in
Figure (1).
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Figure 1. Plots of PDF and HF of IER distribution.

This distribution exhibits behavior similar to several well-known
models, such as the log-normal distribution, the inverse Weibull
distribution, and the generalized inverse exponential distribution. There are
several studies presented by many researchers focusing on estimating the
parameters of IER distribution when observations are complete or
censored. For example, Rastogi and Tripathi (2014) used progressive
Type-1l censoring to compute the ML and Bayesian estimators for the
unknown parameters as well as the reliability and hazard functions of IER
distribution and also constructed interval estimation for the unknown
parameters. Kohansal (2017) derived the MLEs, Bayesian estimators and
some confidence intervals for stress-strength reliability of IER distribution
based on progressive Type-1l censoring scheme. Kayal et al. (2018) derived
the ML estimates for the parameters of IER distribution under hybrid
Type-1 censored using the Expectation—Maximization (EM) algorithm and

Bayesian estimations as well as obtained the predictive estimates and
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prediction intervals of censored observations under hybrid Type-I censored.
Maurya et al. (2019a) and Maurya et al. (2019b) derived different point and
interval estimators for the unknown parameters of IER distribution using
ML and Bayesian methods of estimation as well as obtained prediction
estimates and prediction intervals of censored observations in classical and
Bayesian context based on progressively first-failure censoring and
progressive Type Il censoring schemes, respectively. Gao and Gui (2019)
obtained the ML and Bayesian estimators for the unknown parameters of
IER distribution and also constructed interval estimation for these
parameters in the context of progressively first-failure censoring. Gao et al.
(2020) proposed the pivotal inference methods to estimate the two
unknown parameters of IER distribution based on progressively censored
scheme. Panahi and Moradi (2020) studied IER distribution under adaptive
progressively hybrid censoring and derived ML and Bayesian estimates of
the unknown parameters. Mahto and Tripathi (2020) estimated the
multicomponent stress-strength reliability for IER distribution under
progressive Type Il censoring. Fan and Gui (2022) conducted a study on
the statistical inference of IER distribution, utilizing joint progressively
Type-11 censoring and derived the ML estimates using EM algorithm,
Bayesian estimates and some confidence intervals of the unknown
parameters. More papers have discussed IER distribution, such as Anwar et
al. (2023), Chalabi (2023), Elshahhat et al. (2023), Hashem et al. (2023),
Wang et al. (2024), Tashkandy et al. (2024), and Lodhi et al. (2024).

In this paper, estimation problems for the two-parameter IER
distribution are discussed using GPTIIC and is organized as follows: In

section 2, the maximum likelihood estimation and approximate confidence
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intervals are presented. In section 3 Bayesian estimates are obtained under
symmetric loss functions (squared error (SE)) and asymmetric loss
functions (linear exponential (LINEX)) using Markov Chain Monte Carlo
(MCMC) technique and the highest posterior density (HPD) credible
intervals are provided. In section 4, A Monte Carlo simulation study is
carried out to compare the performance of different estimates. In section 5,
A real data set is introduced and analyzed to investigate the model. Finally,

conclusions of this paper have been drawn in section 6.
2 Maximum Likelihood Method

Let (X¢r41),--+» X)) denotes a GPTIIC sample from IER distribution
with censoring scheme (R(;41), ..., Rmy). Using equations (1), (2) and (3),

the likelihood function of ¥ and 6 can be written in the following form
- -3 _-6 I(Rj+1)—1
L(9,6) = C[200]™ " [1 = Yyl TIrsy 25 e Oy S 07, (6)

where yg41) = (1 — e %%+0) and y;) = (1 — e %*®) . The nature

logarithm of the likelihood function (6), denoted by #, can be derived in

the following form

£ =InC3 + (m—7)In(2) + (m —r)In(¥) + (m — r)In(O + rln(—yg+1))
+31, 40 [3In(xe) — 0552 + OR; + D — D)l ()

To compute the MLEs of 9 and 6, we calculate the first partial derivatives

of (7) with respect to ¥ and 6 and equating to zero as follows

m-r TJ’(r ) 1H(Y(r+1))
9 -;1 + Z =r+1 (R + 1) ln(y(l)) =0 (8)
y(r+1)
and
mer _ rpe VUt Sm B4R - 1Dl —o(9)
— — - + + = 0,
] x(r+1)(1 y(r+1)) l r+1 2 =r+1 ( ( ) ) (zi)Y(i)
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It’s clear that equations (8) and (9) are not in explicit form, therefore, the
estimated values for parameters ¥ and 8 can be obtained using numerical
techniques. Furthermore, once the estimates 9 and @ are obtained, using
the invariance property of MLE, the MLEs S(t) and H(t) of S(t) and
H(t) can be obtained, respectively, for a given mission time t, by

replacing © and @ with their MLEs 9 and 8 in (4) and (5).
9
2

S(t) = (1—e @), t>0,
and
H() = 21§§t_3e_t%(1 — e‘t%)‘l, t > 0.

Two-sided approximate confidence intervals (ACIs) for the unknown
parameters 9 and 6 of IER distribution are constructed using the
asymptotic normal approximation of the MLEs. The variance-covariance
matrix is obtained by inverting the information matrix with elements that
are negatives of expected values of the second order derivatives of
logarithms of the likelihood functions. In the present situation, it seems

appropriate to approximate the expected values using their ML estimates,

Cohen (1965). Accordingly, the approximate variance covariance matrix is

as
92¢ 920 171 o
1,8 A 992 9 03,8
I 1(19, 9) ~ 6192 612969 N ) (10)
9%¢ 9%¢ 6x= 62
- - 5 —~ —~ 9’19 9
0699 002 1(9=9,9=0)
where
2 4 1 2
ot (m-r) TY(r+1)( n()’(r+1)))
992 92 TR
(1-98+1)
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-2 _ _2
9%¢ _ (m-r) Tﬁyglll)e x(r+1) - 1)3/(r+1)e —0xri_4 193/3111)3 0X(1 4 1)

= 5 {
062 62 x(r+1) 1- y(r+1) (1=Y(r41))?
—x=2 —0x7 2

m OR+D)-De O [ 1 70

e X Yo o Yo |
and

v-1 ‘Gx(_r2+1)
92 9% ryhipe O In(¥(r+1) 1
= = - 9

0906 0609 x(2r+1) (1_y(r+1))2 (1_y(13~+1))

+ X (R + 1) P

The 100(1 —a) % two-sided ACIs for the two parameter IER

distribution ¥ and @ based on GPTIIC, can be constructed as:

9 F za 65 and 0 F za 692
2 2

where 019 and &2 are the entries on the main diagonal of the approximate
variance covariance matrix (10), and z« is the upper percentile of the
2

standard normal distribution. To construct the ACIs of S(t) and H(t) of
IER distribution based on GPTIIC, the delta method is considered to obtain

the approximate estimates of the variances of S(t) and H(t) (Greene
(2012)). Hence, according to the delta method, the variances O'Sg(t) and
h e Of S(t) and H(t), can be approximated, respect

Géw =85OI, 0)[B5(®)]

and

Ghy = [BH®IT@, 0@ A®)],

where [BS(t)]T represents the transpose of [@S(t)], [@S(t)] and

[@ H(t)] are, respectively, the gradient (vector of first partial derivatives)
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of S(t) and H(t) with respectto ¥ and @, obtainedat 9 =9 and 6 = 9,
[@3(6)]" = [95(£)/29, 05(£)/96] (-5 o)
and
[@ A(D]T = [0H()29, 0H (£)26] 9-5,0-5)-
Hence, the 100(1 — @)% two-sided AClIs of S(t) and H(t), are given,
respectively, by

S) F zq/0 /6§2@ and  H() ¥ Za/zﬂfﬁé(t)

where z,,, is the upper percentile of the standard normal distribution.

3 Bayesian Estimation

Bayesian estimations of the two-parameter IER distribution 9 and 8 as
well as SF and HF, will be obtained against symmetric and asymmetric loss
functions such as SE and LINEX loss functions based on GPTIIC scheme.
Assume the prior distributions for the unknown parameters ¥ and 6 are

independent Gamma distributions as follows

7(9) = %ﬁa‘le‘bﬁ, a,b >0, (11)
7(6) = %96—1(3—(19, ¢,d >0, (12)

where all the hyper-parameters a,b,c and d, are assumed to be
non-negative and known. The joint prior density of the unknown
parameters 9 and 6 is given by

(9, 0) x 94 le~bdgc-1g-do (13)
Combining (6) and (13), the posterior density of the unknown parameters
9 and 6 can be written as

m(9,0]x) = - L(9,0)m (9, 0), (14)

where A is the normalizing constant
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A= [ [ L(9,0)m(¥,0)d9de. (15)
The selection of a loss function is a crucial aspect of Bayesian estimation
methods. Numerous loss functions have been introduced in the literature to
represent different types of loss frameworks. Among these, the symmetric
SE loss function is one of the most commonly used and is widely applied in
inference. Using posterior distribution (14) based on GPTIIC, Bayesian
estimators of any function of 9,6,S5(t) and H(t) respectively, of IER
distribution, say 8 =19,60,5(t),H(t) under SE loss function is the
posterior expectation, as follows
Ose = E@) = [y J,” 8 L(9,0)m(9,0)d0ds, (16)
where E(.) denotes the posterior expectation. Under LINEX loss
function, Bayesian estimators of 8 = 9,6, S(t), H(t) of IER distribution

can be derived as

Buinex = — 5z In(E(e™"2[x)), b* # 0, (17)
where b* is constant. The sign and magnitude of b* represent the
direction and degree of symmetry.

Since the ratio of multiple integrals given in (16) and (17) cannot be
obtained in a simple closed form, therefore, Bayesian estimates of
9,60,5(t) and H(t) can be evaluated numerically by using computer
facilities and numerical techniques. So, MCMC method is used to obtain an
approximate value for these integrals as well as construct HPD credible
intervals, for this purpose, the conditional posterior distribution of each
parameter is obtained using the posterior distribution. The conditional

posteriors are as follows
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T
(916, x) = Z (0) (~pysgm-rra-1emd®=sinGran) =Kk (R DN

s=0
~ Gamma Distribution(m —r + a, Ay), (18)

and
m(O]9,x) = M+l N XD — yf

9(Ri+1)-1
e Yoy T (19)

where Ay = (b — sIn(Yr4+1)) — XiZr41 (R + DIn(y(;))). From (18), the
unknown parameter 9 follows gamma distribution. Thus, samples of 6
can be easily generated using any gamma generating routine. Since the
conditional probability (19) is not a well-known distribution,
Metropolis—Hastings (M-H) sampler will be used to generate values of 6
following the distribution (19). Therefore, M-H algorithm with a normal
proposal distribution is applied. Thus, M-H within Gibbs sampling steps
are applied to generate random samples from the conditional posterior
densities as follows:

Step 1. Start with an initial values 9(® and 8(®,

Step2. Set] =1.

Step 3. Generate 90 from Gamma(m —r + a, Ay).

Step 4. Generate 89 from w(AU-V[9Y), x) using the following M-H
algorithm:

(@) Generate a proposal 8* from the proposal distribution (the Normal
distribution N(8U~V, 62)

(b) Evaluate the acceptance probabilities by

1(6°[99, )

J-1D %Y = mi
b 0% mln(l’n(9(1—1)|l9(1),£)’
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(c) Generate a w from a uniform U(0,1) distribution.

(d) If w<D(OY=D,0*), accept the proposal and set 8U) = 9*, else set
o) = gU-1)

Step 5. Using 990 and U) Bayesian estimators of SF and HF of IER
distribution as in (4) and (5), for a given mission time t, are given,

respectively, as

216))
SO =(1—e x2)9”, t>0

and

:10))] [:10))]
HDO @) = 2000Dx3e %2 (1 —e x2)" Lt > 0.

Step6. Set ] =]+ 1.
Step 7. Repeat steps 3-6 for M times.
Step 8. Removing the first M, number of iterative values, Bayesian

estimators under SE loss function of 8 =9, 0,5(t), H(t) are derived as

—_1 M
Ose = 3 L1=Mo+1 g

Step 9. Bayesian estimators under LINEX can be computed as

OLiNEX = _%ln(M_;W[OZ}ViMO+1 ~b"e
Step 10. To construct the HPD credible intervals of 8 =9, 0,S5(t), H(t)
sort the remaining values of M — M, in ascending order to be
Y1y, 92y o D e-p)r 01y O2)r -+ O - Sy (8, S2) (), +os Sar -y (D),
and Hqy(t), Hzy(t), ..., Har—p,)(t). The 100(1 — a)% HPD credible
interval for the unknown parameters or any function of them as in 8, is
given by

(BB esnen) € =1,2,..,(M—My) - M,
where M*=[(1—a) X (M —M,)] and €* is selected when the
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following equation is satisfied:

Q(e*+M*) - Q(e*) = 1< es(]\gn—iJI\l/[O)—M*(Q(e-'_M*) - Q(e))-
Then, following Chen and Shao (1999), the HPD credible intervals of

6 can be obtained by choosing the interval which has the shortest length.

4 Numerical Applications

The aim is to evaluate the performance of the different estimation
methods discussed in the previous sections. Monte Carlo simulation is
conducted to examine the behavior of the proposed methods and assess the
statistical performance of the estimators under GPTIIC. All calculations
will be carried out using R programming language, version 4.4.1.

To study the performance of our approach, 1,000 GPTIIC samples from
IER distribution are simulated with the following assumptions:
1. Assume the following selected values of parameters of IER distribution:
(¥,0) = (1.5,1).
2. Different  values of (n,m,r) are  selected  such
as:n = 20(small),50(medium) and 100 (large) and m = 13,15,35,45,50,
and 70, while r = 2,4,5,10,15 and 20.
3. Assume that the following censoring schemes (C.S) will be used to
remove the remaining units:

CSIE R=(n—m,0"(m—1r—1)),

m—-r—1

),

m—-r—1
2

C.SIl: R=(0"( ), n—m, 0*(
CSIHER=0"(m—-—r—1),n—m),
where (0*(m —r — 1)) means that 0 is repeated (m —r — 1) times.
Based on the generated data, ML estimates and associated 95% ACIs

are computed. For Bayesian estimation method, Bayesian estimates using a
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strategy combining M-H within Gibbs algorithm is used to generate 10,000
MCMC samples, discarding the first 2,000 samples as (burn-in period).
Based on the remaining 8,000 samples, Bayesian estimates using SE and
LINEX loss functions (with b* = +0.002) and 95% HPD credible
intervals are computed. Accordingly hyper parameters of gamma prior for
Bayesian estimation are assigned as a=b=c=d =0.0001. The
process is replicated 1,000 times to compute average estimates (means) and
average length of confidence intervals. The mean squared errors (MSES)
are also computed to compare the performance of the ML and Bayesian
estimates in Monte Carlo simulation study. Further, the average interval
lengths (AILs) and coverage probabilities (CPs) of 95% ACIs/HPD
credible intervals are computed to compare the performance of the interval
estimates.

Further, the ML and Bayesian estimates of the SF and HF are obtained
where the corresponding true values of the survival parameters S(t) and
H(t) for specified time t = 0.80, are taken as 5$(0.80) = 0.7026855 and
H(0.80) = 1.553909, respectively. The average ML and Bayesian
estimates of 9,60,S5(t) and H(t) are presented in Table (1). In addition,
the AILs and CPs of 9,60,S(t) and H(t) are listed in Table (2). The
following conclusions are drawn based on the numerical results.

* The performance of Bayesian estimates for the parameters under SE and
LINEX are better than those based on the MLEs.

* When n and m increase, the MSE of all estimations decreases.

* For fixed n and r as m increases the MSEs of ML and Bayesian
estimates decrease.

 For fixed n,m and r, in sence of MSEs Scheme | is smaller than Scheme
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Il and I11 while for S(t), Scheme Il is smaller than Scheme | and II.

* When m—r and n increase, ML estimates become notably more
accurate, where m —r and n represent the sizes of the observed and
complete samples, respectively.

* In most cases, Bayesian estimates of all unknown parameters under
LINEX loss function with b* = 4+0.002 have the lowst MSE values
among all the various estimates.

* It is observed that HPD credible intervals have shorter average lengths
than AClIs and according to CPs the ACIs have better performance.

* Based on the obtained results in this study and because of the need to deal
with small samples in life testing, we recommend to use Bayesian
estimators in place of ML estimators.

Table 1: Average estimates values and mean square error of the ML
and Bayesian estimates based on GPTIIC Schemes at different values
of (m,m,r) for 9 =1.5,0 = 1.

n(m,r) |C.§ Par MLE SE LINEX
b* =-0.002 | b* =0.002
Av.Es | MSE | Av.Es | MSE | Av.Es | MSE | Av.Es | MSE
20(13,2) | 9 [2.094762.08723/1.35775/0.51968| 1.358420.52125[1.35707/0.51813
0 |1.18217)0.203250.91512/0.10965|0.91523 [0.10967/0.91501/0.10962
S(0.80)/0.70966/0.00968/0.70810/0.00609| 0.70811 |0.006090.70809/0.00609
H(0.80)]1.65542/0.33719]1.32976/0.33719]1.32997 |0.20769[1.32956/0.20763
] 9 |2.35135[7.448391.33569(0.82120| 1.33674 [0.82707|1.33465/0.81548
0 |1.18160[0.24114/0.85805/0.12385/0.85817 |0.12387/0.85793|0.12384
S(0.80)/0.69932/0.00984/0.69935|0.00583| 0.69936 |0.00583/0.69934/0.00583
H(0.80)]1.73897/0.49194/1.325300.49194 1.32552 |0.23032]1.32508|0.23022
I 9 [2.6378513.3356|1.31293|0.95031] 1.31456 [0.965081.31135/0.93678
0 |1.229290.288990.82987|0.12673)0.82999 |0.12674/0.82974(0.12673
S(0.80)/0.70864/0.00886/0.70271/0.00469| 0.70272 |0.004690.70270/0.00469
H(0.80)[1.73171/0.52375/1.2788900.52376|1.27911 |0.24501(1.27866/0.24490
20(15,2) | 9 |1.96354]1.24294(1.37618/0.38733 1.37668 [0.38809/1.37569/0.01545
0 |1.14386/0.13817|0.91675/0.08432) 0.91685 |0.08434/0.91664/0.00695
S(0.80)|0.70473/0.00885/0.69875/0.00604| 0.69875 [0.00604/0.69874(0.00604
H(0.80)/1.66243/0.29184/1.39241/0.29184|1.39259 |0.17874/1.39223/0.17867
I 9 2.103912.646341.38303|0.67159| 1.38386 [0.67613]1.38221/0.66721
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)

1.16418

0.18586

0.89784

0.10808

0.89794

0.1080900.89773

0.10806

5(0.80)

0.70690

0.00850

0.69920

0.00560

0.69920

0.00560

0.69919

0.00560

H(0.80)

1.66394

0.32738

1.36441

0.32738

1.36459

0.19521

1.36422

0.19514

iy 9

2.18089

3.88148

1.34920

0.65813

1.35015

0.66311

1.34827

0.65329

)

1.19074

0.21288

0.881990.10405

0.88210

0.10407

0.88188

0.10404

5(0.80)

0.71216

0.00837

0.70070/0.00519

0.70071

0.00519

0.70070

0.00519

H(0.80)

1.65263

0.31020

1.335390.31020

1.33557

0.18356

1.33521

0.18352

20(13,4) 1| o

2.30080

6.74027

0.72770

0.68385

0.72796

0.68364

0.72743

0.68406

0

1.21005

0.25240

0.57058

0.22838

0.57068

0.22831

0.57047

0.22844

5(0.80)

0.70953

0.01048

0.69842

0.00344

0.69842

0.00344

0.69841

0.00344

H(0.80)

1.67604

0.38714

0.97519

0.38714

0.97536

0.39102

0.97503

0.39130

I )

3.07826

65.0288

0.66033

0.80980

0.66062

0.80971

0.66004

0.80989

0

1.26314

0.39400

0.50779

0.28344

0.50789

0.28336

0.50769

0.28351

5(0.80)

0.71220

0.00990

0.69543

0.00267

0.69543

0.00267

0.69542

0.00267

H(0.80)

1.70997

0.60528

0.91520

0.60528

0.91536

0.46451

0.91504

0.46480

" 9

3.16393

45.3623

0.59796

0.88423

0.59821

0.88401

0.59772

0.88445

0

1.31084

0.43938

0.46193

0.32794

0.46203

0.32786

0.46184

0.32801

5(0.80)

0.71350

0.00997

0.69224

0.00247

0.69225

0.00247

0.69223

0.00248

H(0.80)

1.73519

0.46509

0.86607

0.46509

0.86623

0.51383

0.86593

0.51417

20(15,4) 1| o

2.06778

2.08164

0.88218

0.51073

0.88246

0.51064

0.88192

0.51082

)

1.19240

0.23753

0.66997

0.17287

0.67008

0.17283

0.66987

0.17291

5(0.80)

0.71456

0.01000

0.69329

0.00437

0.69330

0.00437

0.69329

0.00437

H(0.80)

1.60407

0.25180

1.10145

0.25180

1.10160

0.26754

1.10131

0.26772

I 9

2.20830

3.89938

0.83588

0.56760

0.83616

0.56751

0.83560

0.56770

)

1.20422

0.24443

0.62552

0.19443

0.62562

0.19438

0.62542

0.19448

5(0.80)

0.71335

0.00898

0.68899

0.00375

0.68899

0.00375

0.68898

0.00375

H(0.80)

1.64272

0.30899

1.07655

0.30899

1.07669

0.29172

1.07640

0.29191

iy 9

2.41933

6.95743

0.79235

0.62403

0.79266

0.62407

0.79204

0.62400

0

1.27544

0.36722

0.60538

0.21478

0.60549

0.21474

0.60528

0.21483

5(0.80)

0.72496

0.01072

0.69151

0.00388

0.69152

0.00388

0.69150

0.00388

H(0.80)

1.60128

0.32392

1.02873

0.32392

1.02887

0.32949

1.028590.32970

Par-Parameter, C.S-Censoring Scheme, Av.Es-Average estimates

Continue Table 1

50(35,10) I |

1.71684

0.32537

0.74492

0.596110.74498

0.59602

0.74485

0.59619

0

1.08084

0.06760

0.60456

0.175190.60460

0.17517

0.60452

0.17522

5(0.80)

0.70630

0.00387

0.69681

0.001690.69682

0.00169

0.69681

0.00169

H(0.80)

1.59454

0.08667

1.06826

0.08667|1.06831

0.25716

1.06820

0.25726

I )

1.71826

0.38609

0.66447

0.71977(0.66453

0.71969

0.66441

0.71987

0

1.07804

0.06764

0.54239

0.22496/0.54242,

0.22494

0.54235

0.22499

5(0.80)

0.70751

0.00359

0.69443

0.001440.69444

0.00144

0.69443

0.00144

H(0.80)

1.58748

0.09093

1.00447

0.09093/1.00452

0.32148

1.00441

0.32158

11 )

1.84044

0.72197

0.62019

0.79441/0.62024

0.79432

0.62013

0.79449

0

1.11559

0.09639

0.50323

0.26153(0.50326

0.26150

0.50319

0.26156
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5(0.80)

0.71089

0.00373

0.69146

0.00133

0.69146

0.00133

0.69145

0.00133

H(0.80)

1.60357

0.10915

0.96769

0.10915

0.96774

0.36257

0.96763

0.36268

50(45,10)

9

1.64882

0.21620

0.94108

0.35189

0.94115

0.35184

0.94102

0.35195

0

1.06776

0.05519

0.71340

0.10446

0.71343

0.10444

0.71337

0.10447

5(0.80)

0.70935

0.00354

0.68894

0.00221

0.68895

0.00221

0.68894

0.00221

H(0.80)

1.56181

0.06796

1.23561

0.06796

1.23566

0.12877

1.23557

0.12882

9

1.65018

0.20057

0.91817

0.37194

0.91824

0.37188

0.91811

0.37200

)

1.06403

0.05274

0.69417

0.11373

0.69420

0.11371

0.69413

0.11375

5(0.80)

0.70745

0.00348

0.68587

0.00221

0.68588

0.00221

0.68588

0.00221

H(0.80)

1.57053

0.06538

1.22732

0.06538

1.22736

0.13121

1.22727

0.13126

9

1.66124

0.24950

0.89955

0.39763

0.89961

0.39756

0.89948

0.39769

)

1.06595

0.06291

0.67817

0.12616

0.67821

0.12614

0.67814

0.12618

5(0.80)

0.70701

0.00375

0.68340

0.00237

0.68340

0.00237

0.68340

0.00237

H(0.80)

1.56950

0.06846

1.21656

0.06846

1.21661

0.13863

1.21651

0.13869

50(35,20)

9

1.86805

0.88355

0.06295

2.06526

0.06295

2.06526

0.06295

2.06526

0

1.13732

0.13769

0.00360

0.99281

0.00360

0.99281

0.00360

0.99281

5(0.80)

0.71405

0.00530

0.63743

0.00431

0.63743

0.00431

0.63742

0.00431

H(0.80)

1.57943

0.10661

0.15635

0.10661

0.15636

1.95399

0.15635

1.95403

)

1.96314

1.26799

0.06150

2.06942

0.06150

2.06942

0.06150

2.06942

0

1.17256

0.18923

0.00320

0.99361

0.00320

0.99361

0.00320

0.99362

5(0.80)

0.71978

0.00572

0.63860

0.00416

0.63860

0.00416

0.63859

0.00416

H(0.80)

1.56374

0.10378

0.15288

0.10378

0.15288

1.96367

0.15287

1.96370

)

2.06183

2.36433

0.06055

2.07215

0.06055

2.07215

0.06055

2.07215

0

1.19039

0.22687

0.00289

0.99423

0.00289

0.99423

0.00289

0.99423

5(0.80)

0.72177

0.00641

0.63940

0.00406

0.63941

0.00406

0.63940

0.00406

H(0.80)

1.55640

0.10956

0.15061

0.10956

0.15062

1.96998

0.15061

1.97001

50(45,20)

)

1.69827

0.36853

0.38070

1.25676

0.38072

1.25672

0.38068

1.25680

)

1.10024

0.09379

0.21970

0.61299

0.21972

0.61297

0.21969

0.61303

5(0.80)

0.71528

0.00469

0.61446

0.00856

0.61447

0.00856

0.61446

0.00856

H(0.80)

1.53905

0.07130

0.77156

0.07130

0.77160

0.61993

0.77151

0.62005

9

1.69273

0.33112

0.36753

1.28619

0.36755

1.28615

0.36752

1.28623

)

1.09793

0.09759

0.20704

0.63286

0.20706

0.63283

0.20702

0.63289

5(0.80)

0.71461

0.00495

0.61212

0.00899

0.61213

0.00899

0.61212

0.00899

H(0.80)

1.53668

0.07282

0.75324

0.07281

0.75328

0.64879

0.75320

0.64891

9

1.74415

0.40873

0.35961

1.30371

0.35962

1.30367

0.35959

1.30375

0

1.11904

0.10995

0.19782

0.64693

0.19784

0.64690

0.19781

0.64695

5(0.80)

0.71686

0.00496

0.60967

0.00935

0.60967

0.00935

0.60966

0.00935

H(0.80)

1.542890.06984

0.74368

0.06984

0.74372

0.66334

0.74364

0.66347

Continue Table 1

100(50,5)

9

1.60365

0.13344

1.29151]]

0.11259

1.291590.11257

1.29143

0.11260

0

1.03209

0.02274

0.92217

0.02306

0.92219

0.02306

0.92215

0.02306

5(0.80)

0.70219

0.00192

0.70905

0.00158

0.70906

0.00158

0.70905

0.00158

H(0.80)

1.58781

0.05667

1.40732

0.05667

1.40737|

0.06042

1.40728

0.06044
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9

1.60924

0.17502

1.20400

0.16166

1.20409

0.16164

1.20390

0.16169

)

1.03135

0.02422

0.88186

0.03084

0.88188

0.03084

0.88184

0.03084

5(0.80)

0.70285

0.00168

0.71178

0.00135

0.71178

0.00135

0.71177

0.00135

H(0.80)

1.58577

0.06289

1.35043

0.06289

1.35048

0.07959

1.35038

0.07961

9

1.68649

0.31552

1.13329

0.21434

1.13341]

0.21430

1.13317

0.21438

0

1.05472

0.03589

0.84389

0.04310

0.84392

0.04309

0.84387

0.04311

5(0.80)

0.70477

0.00143

0.71300

0.00107

0.71300

0.00107

0.71299

0.00107

H(0.80)

1.60161

0.07031

1.30063

0.07031

1.30068

0.09829

1.30058

0.09833

100(70,5)

9

1.56809

0.08147

1.34728

0.07413

1.34734

0.07413

1.34722

0.07414

0

1.02065

0.01851

0.93513

0.01921

0.93514

0.01921

0.93511

0.01921

5(0.80)

0.70123

0.00178

0.70203

0.00153

0.70203

0.00153

0.70203

0.00153

H(0.80)

1.57823

0.04240

1.46142

0.04240

1.46146

0.04093

1.46139

0.04094

9

1.58637

0.10212

1.32442

0.08868

1.32449

0.08867

1.32435

0.08869

0

1.02684

0.02031

0.92348

0.02148

0.92349

0.02148

0.92346

0.02148

5(0.80)

0.70213

0.00145

0.70291

0.00120

0.70291

0.00120

0.70291

0.00120

H(0.80)

1.58114

0.03724

1.44446

0.03724

1.44449

0.03924

1.44443

0.03924

9

1.61777

0.14997

1.30668

0.10973

1.30676

0.10973

1.30659

0.10974

)

1.04086

0.02749

0.91394

0.02638

0.91396

0.02638

0.91392

0.02639

5(0.80)

0.70452

0.00153

0.70348

0.00123

0.70349

0.00123

0.70348

0.00123

H(0.80)

1.58087

0.04154

1.42804

0.04154

1.42807

0.04488

1.42800

0.04489

100(50,15)

9

1.62778

0.18499

0.64621

0.74144

0.64625

0.74138

0.64618

0.74150

)

1.04005

0.03023

0.58717

0.17920

0.58719

0.17918

0.58715

0.17921

5(0.80)

0.70322

0.00197

0.72422

0.00123

0.72422

0.00123

0.72422

0.00123

H(0.80)

1.58837

0.05853

0.95495

0.05853

0.95498

0.37090

0.95491

0.37098

9

1.69701

0.26652

0.52485

0.95840

0.52488

0.95835

0.52482

0.95846

0

1.05837

0.03422

0.48900

0.26771

0.48902

0.26769

0.48898

0.26773

5(0.80)

0.70243

0.00180

0.72521

0.00105

0.72521

0.00105

0.72520

0.00105

H(0.80)

1.61781

0.06791

0.84450

0.06791

0.84453

0.51168

0.84447

0.51177

)

1.76756

0.50545

0.42677

1.15677

0.42679

1.15673

0.42675

1.15682

0

1.07296

0.05567

0.39946

0.36585

0.39948

0.36583

0.39944

0.36587

5(0.80)

0.70408

0.00174

0.72582

0.00092

0.72583

0.00092

0.72583

0.00092

H(0.80)

1.62236

0.08673

0.74342

0.08673

0.74345

0.66356

0.74339

0.66365

100(70,15)

)

1.58184

0.09947

0.92576

0.35117

0.92580

0.35113

0.92572

0.35121

)

1.02955

0.02460

0.73072

0.08429

0.73073

0.08428

0.73070

0.08429

5(0.80)

0.70327

0.00182

0.70231

0.00106

0.70231

0.00106

0.70230

0.00106

H(0.80)

1.57249

0.03814

1.21325

0.03814

1.21328

0.13172

1.21322

0.13175

)

1.58490

0.12191

0.8498600.44226

0.84990

0.44222

0.84983

0.44231

)

1.03412

0.02590

0.683950.11036

0.68397

0.11035

0.68393

0.11037

5(0.80)

0.70601

0.00155

0.70226

0.00083

0.70226

0.00083

0.70226

0.00083

H(0.80)

1.56225

0.03697

1.15922

0.03697

1.15925

0.16982

1.15919

0.16986

9

1.62676

0.16536

0.79575

0.51276

0.79578

0.51271

0.79571

0.51280

0

1.04865

0.03056

0.64262

0.13712

0.64264

0.13711

0.64260

0.13714

5(0.80)

0.70690

0.00150

0.69883

0.00075

0.69884

0.00075

0.69883

0.00075

H(0.80)

1.57376

0.03961

1.12567

0.03961

1.12570

0.19603

1.12564

0.19608
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Table 2: AlLs and CPs of 9,0,5(0.80)andH (0.80) using ML and
Bayesian estimates based on GPTIIC schemes at different values of
(n,m,r) for 9 =1.5,0 = 1.

n(m,r) C.S Par ACI HPD
AlIL CP AlIL CP
20(13,2) I 9 4.67658 95.50 3.02555 95.16
0 1.61732 95.40 1.69182 95.66
S(0.80) 0.38487 97.70 0.45669 98.43
H(0.80) | 2.24231 95.30 2.24803 95.70
I 9 7.43606 97.30 3.03429 95.09
0 1.78938 96.10 1.67180 95.53
S(0.80) 0.38883 97.70 0.45374 98.34
H(0.80) | 2.65327 95.60 2.11424 95.56
i 9 9.44232 97.40 3.43435 95.07
0 1.90693 95.00 1.65464 95.43
S(0.80) 0.36851 97.90 0.41173 98.31
H(0.80) | 2.75132 95.10 2.05053 95.44
20(15,2) I 9 3.95181 95.90 2.57033 95.21
0 1.34422 95.70 1.46749 95.80
S(0.80) 0.36879 98.30 0.43265 98.44
H(0.80) | 2.07549 95.60 2.08373 95.80
I 9 5.06593 96.90 3.35439 95.14
0 1.56337 94.70 1.54857 95.66
S(0.80) 0.36112 97.40 0.42712 98.16
H(0.80) | 2.20211 95.70 2.15133 95.77
i 9 5.80618 97.50 3.16815 95.13
0 1.64765 95.00 1.65527 95.61
S(0.80) 0.35691 97.60 0.41143 98.24
H(0.80) | 2.14974 96.10 1.89597 95.73
20(13,4) I 9 7.14357 98.40 1.72999 95.12
0 1.78984 95.00 1.29404 95.00
S(0.80) 0.40062 98.60 0.39095 98.39
H(0.80) | 2.39273 96.20 1.66313 95.58
I 9 18.5856 98.80 1.41858 95.09
0 2.23500 95.90 1.16164 95.00
S(0.80) 0.38858 97.50 0.40976 98.26
H(0.80) | 2.98921 97.30 1.60904 95.55
i 9 15.9618 98.60 1.40298 95.09
0 2.29609 95.10 1.17259 95.00
S(0.80) 0.38929 96.40 0.41774 98.07
H(0.80) | 2.57841 94.70 1.49259 95.52
20(15,4) I 9 4.66873 96.20 1.83546 95.18
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0 1.75616 94.90 1.40653 95.31
S(0.80) | 0.38944 97.40 0.41959 98.20
H(0.80) | 1.95813 95.60 1.67880 95.82
I 9 5.82287 97.40 1.78999 95.17
0 1.76582 95.40 1.30893 95.19
S(0.80) | 0.36931 97.10 0.39447 98.20
H(0.80) | 2.15205 96.00 1.63362 95.70
1l 9 7.26737 97.10 1.84814 95.15
0 2.11693 95.00 1.42009 95.06
S(0.80) | 0.39650 97.50 0.42779 98.00
H(0.80) | 2.22435 96.40 1.58025 95.72
Par -Parameter.
Continue Table 2
50(35,10) I 9 2.06914 95.80 1.03229 95.62
0 0.96914 95.60 0.88962 96.09
S(0.80) | 0.24359 97.70 0.27599 97.86
H(0.80) | 1.14354 95.90 1.00550 96.26
1 9 2.28160 95.60 0.96234 95.58
0 0.97298 95.80 0.84327 95.96
S(0.80) | 0.23428 97.30 0.27619 97.84
H(0.80) | 1.17529 96.40 1.01945 96.24
Il 9 3.05320 95.20 0.91575 95.49
0 1.13008 95.50 0.81454 95.85
S(0.80) | 0.23739 97.20 0.25957 97.81
H(0.80) | 1.28099 97.00 1.05069 96.19
50(45,10) I 9 1.72767 95.00 1.15654 95.76
0 0.88217 95.90 0.94387 96.22
S(0.80) | 0.23175 97.30 0.29248 97.80
H(0.80) | 1.02193 95.70 1.05437 96.36
1 9 1.65474 95.50 1.11588 95.81
0 0.86492 95.80 0.85596 96.26
S(0.80) | 0.23063 97.50 0.28738 97.88
H(0.80) | 1.00068 95.90 1.02653 96.41
1 9 1.85411 95.70 1.11735 95.72
0 0.94907 95.40 0.89616 96.13
S(0.80) | 0.23948 96.90 0.28056 97.76
H(0.80) | 1.02430 96.00 1.04501 96.36
50(35,20) I 9 3.39211 96.10 0.12484 95.32
0 1.35195 95.30 0.02679 95.00
S(0.80) | 0.28208 96.60 0.30172 97.86
H(0.80) | 1.27663 96.40 0.30634 95.35
1 9 3.97585 95.60 0.10844 95.36
0 1.56608 94.80 0.02351 95.00
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$(0.80) | 0.28913 96.20 0.27741 97.86

H(0.80) | 1.26282 96.20 0.26854 95.36

] 9 4.86857 96.30 0.11128 95.39

0 1.71233 96.00 0.01946 95.00

$(0.80) | 0.30491 97.40 0.28573 97.89

H(0.80) 1.29807 95.70 0.27140 95.38

50(45,20) | 9 2.25029 97.20 0.54346 95.77

0 1.13494 96.20 0.51589 95.02

S(0.80) 0.26401 97.10 0.30629 97.59

H(0.80) 1.04563 96.50 0.81910 96.43

I 9 2.12644 95.80 0.53645 95.73

0 1.16343 95.60 0.52407 95.00

$(0.80) | 0.27198 97.00 0.31448 97.59

H(0.80) | 1.05615 97.20 0.84005 96.42

1 9 2.31729 96.40 0.51592 95.71

0 1.21377 95.40 0.47755 95.00

S(0.80) 0.27054 96.80 0.29603 97.57

H(0.80) | 1.03552 97.20 0.83665 96.44
Continue Table 2

100(50,5) I 9 1.37378 95.40 1.43360 95.89

0 0.57784 96.30 0.69661 96.58

$(0.80) | 0.17195 97.80 0.22499 97.90

H(0.80) | 0.92415 95.90 1.07527 96.36

1l 9 1.58379 96.10 1.42440 95.74

0 0.59780 96.60 0.72693 96.65

$(0.80) | 0.16106 97.70 0.19705 97.85

H(0.80) | 0.97556 96.00 1.06344 | 96.31

1 9 2.07801 95.90 1.57376 95.53

0 0.71142 96.60 0.81175 96.54

S(0.80) 0.14803 97.60 0.19032 97.88

H(0.80) 1.02297 96.00 1.09308 96.20

100(70,5) I 9 1.08709 95.70 1.21559 96.17

0 0.52745 96.60 0.69232 96.74

$(0.80) | 0.16543 97.40 0.22112 97.87

H(0.80) | 0.80191 96.40 0.97314 96.56

1l 9 1.20665 96.30 1.32740 95.97

0 0.54895 96.70 0.69118 96.65

$(0.80) | 0.14924 97.60 0.19740 97.70

H(0.80) | 0.74925 96.60 0.91202 96.58

1 9 1.44687 96.10 1.44697 95.76

0 0.63016 96.00 0.77086 96.59

$(0.80) | 0.15332 97.60 0.19307 97.74

H(0.80) 0.79232 96.50 0.95219 96.51
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100(50,15) | 9 161065 | 95.80 | 0.80402 | 95.80
0 0.66355 | 96.80 | 0.64463 | 96.55
5(0.80) | 0.17390 | 97.90 | 0.20081 | 97.89
H(0.80) | 0.93918 | 96.90 | 0.87527 | 96.46
T 9 187148 | 9540 | 0.69805 | 95.74
0 0.68847 | 9650 | 0.61638 | 96.33
5(0.80) | 0.16637 | 97.60 | 0.19254 | 97.94
H(0.80) | 0.99084 | 9590 | 0.76408 | 96.35
i 9 258327 | 9520 | 055044 | 95.68
0 0.87999 | 96.00 | 056397 | 96.13
5(0.80) | 0.16348 | 96.90 | 0.17746 | 97.90
H(0.80) | 1.12340 | 96.60 | 0.70832 | 96.27
100(70,15) | 9 119453 | 9570 | 0.93090 | 96.06
6 0.60409 | 96.00 | 0.63807 | 96.55
5(0.80) | 0.16737 | 97.70 | 0.20505 | 97.85
H(0.80) | 0.76242 | 96.30 | 0.81767 | 96.56
T 9 132824 | 9590 | 0.84578 | 95.99
0 0.61677 | 96.70 | 0.65678 | 96.61
$(0.80) | 0.15386 | 97.00 | 0.19387 | 97.83
H(0.80) | 0.75336 | 97.00 | 0.77578 | 96.53
i 9 151536 | 9530 | 0.85788 | 9591
6 0.65847 | 96.30 | 0.64258 | 96.53
5(0.80) | 0.15121 | 97.80 | 0.18611 | 97.78
H(0.80) | 0.77665 | 9580 | 0.76233 | 96.55
5- Real Data

Real data will be analyzed to compare the performance of different
estimates and confidence intervals for the non-Bayesian (ML) and

Bayesian methods of unknown parameters 9,6,S(t) and H(t) of IER

distribution based on GPTIIC scheme.

A real-life data set, originally reported by Efron (1988) , comprises the
survival times of 44 patients with head and neck cancer who were treated

with a combination of radiotherapy and chemotherapy(RT+CT). This data

set is analyzed to illustrate the application of the proposed methods. The
survival times for these cancer patients are detailed in Table (3). This data

has also been recently analyzed by Maurya et al.(2019a) and Maurya et al.
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(2019b), who fitted IER distribution to this real data set and proved that

IER distribution is a good model for fitting this data. For computational

convenience, the original data is transformed by divide it on hundred.

Table 3: Survival times of head and neck cancer patients

0.1220 0.2356 0.2374 0.2587 0.3198 0.3700 0.4135 0.4738
0.5546 0.5836 0.6347 0.6846 0.7447 0.7826 0.8143 0.8400
0.9200 0.9400 1.1000 1.1200 1.1900 1.2700 1.3000 1.3300
0.4000 1.4600 1.5500 1.5900 1.7300 1.7900 1.9400 1.9500
0.0900 2.4900 2.8100 3.1900 3.3900 4.3200 4.6900 5.1900
0.3300 7.2500 8.1700 17.7600

Using the data sets from Table (3) various choices of m,r and

R,i=r+1,...,m to illustrate the proposed methods, three different

groups of GPTIIC data with corresponding censoring schemes were

generated and presented in Table (4). These groups were randomly drawn

from the parent sample as follows:

Table 4: Three different generated GPTIIC samples (head neck cancer)

Sample

m

r

R

GPTIIC Samples

37

3

(7,0°33)

0.2587,

0.6846,

0.7447,10.7826,

0.8143,]0.8400,

0.9294,

0.9400,

1.1000,

1.1200,]1.1900,

1.2700,|1.3000,

1.3300,

1.4000,

1.4600,

1.5500,]1.5900,

1.7300,{1.7900,

1.9400,

1.9500,

2.0900,

2.4900,]2.8100,

3.1900, |3.3900,

4.3200,

4.6900,

5.1900,

6.3300,|7.2500,

8.1700,|17.7600

37

(0712,1,012,2,0"8,4),0.2587,

0.3198,

0.3700,0.4135,

0.4738,10.5546,

0.5836,

0.6347,

0.6846,

0.7447,10.7826,

0.8143,0.8400,

0.9400

1.1000,

1.1200,

1.1900,|1.2700,

1.3000, ]1.3300,

1.4000,

1.4600,

1.5500,

1.5900,|1.7300,

1.7900, ]2.0900,

2.4900,

2.8100,

3.1900,

3.3900, |4.3200,

4.6900, | 5.1900

37

(0°33,7)

0.2587,

0.3198,

0.3700,|0.4135,

0.4738,|0.5546,

0.5836,

0.6347,

0.6846,

0.7447,]0.7826,

0.8143,]0.8400,

0.9294,

0.9400,

1.1000,

1.1200,|1.1900,

1.2700,]1.3000,

1.3300,

1.4000,

1.4600,

1.5500,|1.5900,

1.7300,]1.7900,

1.9400,

1.9500,

2.0900,

2.4900,]2.8100,

3.1900,|3.3900

Here, (0*8), means that the censoring scheme employed is (0,0,0,0,0,0,0,0)

Using the data sets from Table (4), the ML and Bayesian estimates of the

unknown parameters 9 and 6, as well as, the reliability characteristics

S(t) and H(t) at given mission time t = 0.50, are computed and listed in

Table (5). The initial values for the unknown parameters for running
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MCMC sampler algorithm were taken to be their ML estimates. Moreover,
two-sided 95% ACI and HPD credible intervals with their lengths are
calculated and listed in Table (6).

Using SE and LINEX (for (b* = —0.5,0.5) ) loss functions, Bayesian
estimates are obtained under the hyper parameters the a=b =c=d =
0.0001. Using MCMC algorithm, 10,000 MCMC samples are generated
and then the first 1,000 iterations (burn-in period) have been discarded
from the generated sequence. All necessary computational algorithms are
implemented using R statistical programming language, version 4.4.1,
with two key statistical packages: the ’coda’ package for performing
MCMC Bayesian estimations as proposed by Plummer et al. (2006), and
the 'maxLik’ package, which utilizes the Newton-Raphson method for
maximization in computations, as proposed by Henningsen and Toomet
(2011).

Based on Tables (5&6), it can be seen from the estimated results of
point and interval estimates of the unknown parameters 9 and 6, as well as
S(t) and H(t) that Bayesian estimates have performed better than the ML
estimates. Additionally, it is observed that the length of the HPD credible
intervals is less than the corresponding length of the AClIs. Furthermore, it
is observed that for 9,6, and S(t), the performance of the estimates in
sample 3 is better than in the other two samples (1 and 2) while for H(t)
the performance of the estimates in sample 1 is better than in the other two

samples (2 and 3).
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Table 5: Point estimates of 9,0,S(t), and H(t) using ML and
Bayesian estimates for real data set based on GPTIIC under various
censoring schemes.

Sample Par MLE SE LINEX

1 b*=-0.5 b* = 0.5
9 0.35579 0.30995 0.31095 0.30896

0 0.17771 0.15397 0.15468 0.15327

S(0.50) 0.78629 0.78009 0.78078 0.77940

H(0.50) 0.97676 0.89017 0.89617 0.88429

2 ) 0.43186 0.37132 0.37290 0.36977
0 0.16479 0.14091 0.14144 0.14039

S(0.50) 0.73011 0.72759 0.72832 0.72685

H(0.50) 1.22023 1.09614 1.10540 1.08711

3 ) 0.35440 0.30663 0.30767 0.30560
0 0.14922 0.12771 0.12819 0.12723

S(0.50) 0.75321 0.75035 0.75102 0.74968

H(0.50) 1.03639 0.93236 0.93904 0.92583

Par -Parameter

Table 6: The 95%two-sided ACIs/HPD credible intervals of 9,0, S(t)
and H(t) for real data set based on GPTIIC Scheme.

Sample Par ACI HPD
lower Upper AlL lower upper AlL

1 9 0.22019 | 0.49140 | 0.27120 | 0.19732 | 0.44004 | 0.24271
0 0.06473 | 0.29070 | 0.22598 | 0.05458 | 0.25677 | 0.20220

S(0.50) | 0.68287 | 0.88972 | 0.20686 | 0.67312 | 0.87566 | 0.20254
H(0.50) | 0.25099 | 1.70252 | 1.45152 | 0.58687 | 1.18782 | 0.60094

2 9 0.26013 | 0.60359 | 0.34346 | 0.21965 | 0.52202 | 0.30236
0 0.06726 | 0.26231 | 0.19506 | 0.05202 | 0.22945 | 0.17743

S(0.50) | 0.62238 | 0.83786 | 0.21548 | 0.61612 | 0.82689 | 0.21076
H(0.50) | 0.40824 | 2.03222 | 1.62399 | 0.73461 | 1.47260 | 0.73798

3 9 0.21566 | 0.49315 | 0.27749 | 0.18988 | 0.43680 | 0.24692
0 0.05560 | 0.24283 | 0.18722 | 0.04877 | 0.21918 | 0.17041

S(0.50) | 0.65146 | 0.85495 | 0.20349 | 0.64360 | 0.84530 | 0.20171
H(0.50) | 0.39599 | 1.67679 | 1.28080 | 0.62599 | 1.25387 | 0.62788

Par -Parameter, AlL-Average interval length.

Moreover, as a further illustration, the trace plots for all parameters in
MCMC trace with their histograms for each parameter and the convergence
of MCMC estimation for 99 and 6 of GPTIIC using MCMC are shown in
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Figure (2). It is evident that MCMC algorithm sampler converges well. In
each histogram plot, it shows that all the generated posterior estimates have
been well approximated the theoretical posterior density functions. It also
shows that discarding the first 1,000 samples as burn-in is an appropriate
size to remove the effect of the initial guesses.
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Figure 2: Trace plots, histograms and convergence for 9 and 6 using
MCMC algorithm.

6 Conclusions

The object of this paper is to study different estimates of the unknown
model parameters of IER distribution under GPTIIC scheme. Both ML and
Bayesian estimation methods are used to obtain the estimates and Bayesian
estimates are obtained based on the symmetric and asymmetric loss
functions under the assumption of independent gamma priors using MCMC
method. Approximate confidence intervals for the unknown parameters are
constructed based on asymptotic theory and also approximate confidence
intervals for survival characteristics are constructed using the delta method.
Monte Carlo simulation study is performed to compare the performance of
the estimates in terms of the MSEs. It is observed that Bayesian estimates
under LINEX loss function perform better than the other estimates. Further,
a real data set is considered for illustrative purposes.
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