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ABSTRACT: The concept of  bitopological spaces was introduced by J.C.Kelly [11]. He studied some of 

separation axioms properties in bitopological spaces. Many authors studied the relation between rough set 

and topology[1, 3, 6, 10, 13, 15]. The relation between rough set and minimal structure was studied 

in[20,9,23]. In this paper we used the right and the left neighborhood of any relation to introduce a biminimal 

approximation space of uncertain sets as a mathematical tool to modify the approximations. we discussed 

some definitions and properties of rough sets and applied them in two minimal structures generated by using 

the right and left neighborhoods. Moreover, several important measures such as accuracy measure and 

quality of approximation would be studied. We proved that biminimal structure is more efficient and accurate 

in obtaining results than bitopology. Finally, we show the importance of our new approximations with 

medical science by applying these approximations in corona virus problem. 
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I. INTRODUCTION 
 

    V. Popa and T. Noiri [ 25] represented the concept of  minimal structure (briefly M structure).  They 

introduced the notion of  M-closure and M-interior. The concept of M-open set and M-closed set was 

characterized . The notion of M-continuous functions on functions between minimal structures have been 

introduced.  In [5,9, 28,40] the properties and applications of minimal structure was studied.  

    The concept of  bitopological spaces was introduced by J.C.Kelly [11]. He studied some of separation axioms 

properties in bitopological spaces. In [10,12, 19, 17,22, 33, 24, 36, 29] many concepts and characterizations of 

topological space have been studied in bitopological spaces.  The notion of biminimal structure spaces was 

introduced by C.Boonpok [ 3] He studied m
1
XmX²- closed sets and m

1
XmX²-open sets in biminimal structure 

spaces. C.Boonpok et.al [32] introduced gm 
(i,j)

 - closed sets, m
(i,j)

 - T (1/2)-spaces and gm
(i,j)

  -continuity for 

biminimal structure spaces and investigated some of their properties . The concept of smg-closed sets and pair 

wise smg-closed set in biminimal structure space were introduced by E. Subaha and N. Nagaveni [ 34] and some 

of its properties were studied . 

    Rough set theory introduced by Pawalak [27, 28,29] has been considered as an extension of set theory. Rough 

set theory has been applied in many fields such as machine learning and knowledge discovery [.7, 14, 39] data 

mining [6, 18] decision-making support and analysis [ 8, 16, 17, 20, 34, 25] process control [ 26]expert system 

[38] and pattern recognition [21].The concept of topological rough sets was introduced by Wi-weger[35]. Al-

Shami studied the relation between rough set and topology[1, 2, 3, 4]. The concept of Cj-neighborhoods were 

used to improve rough set's accuracy measure[7,8]. Also  Al-Shami and others used the concepts of j-adhesion 

neighborhoods and ideals to generate topologies and defined a new rough set model derived from these 

topologies. These models have been proved to be finer than other topologies [3]. 
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    El-Sharkasy [9] represented the concept of minimal structure approximation spaces and near open sets and 

studied some of its applications. 

    In this paper, we represented the concept of biminimal structure space and studied MxR  MRx- open sets and 

MxRMRx- closed sets in biminimal structure approximation spaces. We applied the new concepts in a very 

critical problem (covid-19). The rest of this article is organized as follows: Section 2 is devoted to recalling 

some basics and properties of minimal structure, some concepts in rough set theory and minimal structure 

approximation space.  In section 3 we introduced the concept of biminimal structure approximation space and 

studied some of it's properties.  Furthermore, we defined the minimal general lower(upper) approximation and 

investigated some of it's properties.  Section 4 we discussed the definability of any set in biminimal structure 

approximation space and gave some examples. Section 5 applying the biminimal structure approximation space 

in covid-19 problem. 

. 

II. PRELIMINARIES 
 

In this section we reviewed some basic notions that helpful for our next sections. 

    Definition 2.1: [29] A family M⊆P(X) is said to be a minimal structure on X if φ , X ∈ M, then the pair 

(X,M) is said to be minimal space. A set A∈P(X) is called M-open set if A∈M, and  is called M-closed set if A
c 

∈ M.   

    Definition 2.2: [29] Let (X,M) be a minimal space and A ⊆ X. Then the M-interior is defined as M-

int(A)=∪{G:G∈M,G⊆A}, and the M-closure is defined as M-cl(A) = ∩{F: F
c
 ∈M, A⊆F}. 

    Definition 2.3: [29] Let R be an equivalence relation on U, and X⊆U. The equivalence class of the element x 

is defined as [x] = {y : yRx }. The family of all equivalence classes with respect to equivalence relation R is 

defined as U/R={[x] : x∈U}.   

    Definition2.4: [29] Let X ⊆U and R be an equivalent relation on U. Then the lower and (upper) 

approximation resp. is defined as  RX =∪{Y∈U/R: Y⊆X} and  RX=∪{Y∈U/R: Y∩X ≠φ}.  

    Proposition 2.1: [28] Let X ⊆U and R be an equivalence relation on U. Then 

    (1) X is R- definable (R-exact) if and only if RX = RX. 

    (2) X is rough (R-inexact) if and only if RX ≠ RX.    

Proposition 2.2: [28] Let X,Y ⊆U and R be an equivalence relation on U. Then 

    (1) RX ⊆X⊆ RX. 

    (2) Rφ = Rφ = φ , RU = RU=U. 

    (3) R(X∩Y) = RX ∩.RY. 

    (4) R(X∪Y)=RX ∪ RX. 

    (5) X ⊆Y implies RX ⊆ RY. 

    (6) X ⊆Y implies RX ⊆ RY.     

     



Bulletin  of Faculty of Science ,Zagazig University (BFSZU) 2025 
 

 
h t t p s : / / b f s z u . j o u r n a l s . e k b . e g / j o u r n a l  Page 19 

Definition 2.5: [29] Let (X,M) be a minimal space, and A⊆U. Then A has the following types of definability: 

    (1) A is totally definable (exact) if M-int(A)=A=M-cl(A). 

    (2) A is internally definable if M-int(A)=A and M-cl(A)≠A. 

    (3) A is externally definable if M-int(A)≠A and M-cl(A)=A. 

    (4) A is undefinable (rough) If M-int(A)≠A and M-cl(A)≠A.    

    Definition 2.6: [9] Let (U, R) be a generalized approximation space, where U be a finite nonempty universe 

set and R be an arbitrary binary relation on U. Let N(X)={y ∈U: xRy} is the right neighborhood of x for all x 

∈U. Then the class MS(U)={φ, U, N(X)} is called a minimal structure on (U, R). The members of the minimal 

structure MS(U) are called MS-open sets and (U,R,MS) is called minimal structure approximation space ( 

MSAS for short). The complement of an MS-open set is called MS-closed set. The class of all MS-closed sets is 

denoted by MS
c
(U).     

    Definition 2.7: [9] Let (U,R,MS) be MSAS, and A⊆U. The lower and upper approximation is defined resp. 

as MS(A) = ∪{G:G∈MS(U),G⊆A}, and MS(A) = ∩{F : F∈MS
c
(U),A⊆F}.    

    Definition 2.8: A subset A of a topological space (X,τ) is called: 

    (1) Pre-open [13] if A⊆ int(cl(A)) and pre-closed if cl(int(A))⊆A. 

    (2) Semi-open [16] if A ⊆cl(int(A)) and semi-closed if int(cl(A))⊆A. 

    (3) γ-open  [13] if A ⊆cl(int(A))∪int(cl(A)). 

    (4) Semi-preopen [1] (β-open [9]) if A ⊆cl(int(cl(A))), and semi-pre-closed (β-closed) if int(cl(int(A)))⊆A. 

    (5) α-open [23] if A⊆int(cl(int(A))) and α-closed if cl(int(cl(A)))⊆A.  

    Definition 2.9: let M₁ and M₂ are two minimal structure spaces, if M₁⊆M₂.Then M₁≺M₂. 

III. Biminimal approximations 

 In this section, we defined two minimal structure generated by any binary relation R. The first minimal 

structure denoted by (MxR) is generated by the right neighborhood xR={y∈ X: xRy}. The second minimal 

structure denoted by( MRx) is generated by the left neighborhood Rx={y ∈X :yRx}.  By using these 

minimal structures we introduced the the minimal lower and upper approximation of a subset X⊆U as  

MxR (X)=∪{xR: xR ⊆X} , MxR(X) = ∪{xR : xR ∩X ≠φ}, and MRx(X) = {Rx :Rx ⊆X}, MRx(X) =∪{Rx: Rx ∩X 

≠φ}.  

    Definition 3.1: Let (U,R) be a generalized approximation space where U be a finite non empty universe set 

and R an arbitrary relation on U. The classes MxR(U)={φ, U, xR} and MRx(U)={φ, U, Rx} are called the first 

and the second minimal on (U,R) respectively. The triple (U ,MxR ,MRx) is called biminimal structure 

approximation space.  

    Definition 3.2: Let (U,MxR, MRx) be a biminimal structure approximation space, and X⊆U. Then X is said to 

be 

    (1) M-Semi-rough (M-S₁₂-Rough) if X⊆MRx( MxR(X)). 

    (2) M-Pre-rough(M-P₁₂-Rough) If X⊆  MxR(MRx(X)). 
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    (3) M-Semi-Pre rough( M-β₁₂-rough) if X⊆MRx((MxR(MRx(X))). 

    (4) M-α-rough ( M-α₁₂-rough) if X⊆ MxR(MRx(MxR(X))). 

    (5) M-γ-rough( M-γ₁₂-rough) if X⊆ (MRx(MxR(X))) ∪ (MxR(MRx(X))). 

    The family of all M-S₁₂-rough(Resp. M-P₁₂-rough, M-β₁₂-rough, M-α₁₂-rough and M-γ₁₂-rough ) set in 

(U,R) is denoted by M-S₁₂(U), M-P₁₂(U), M-β₁₂(U), M-α₁₂(U) and M-γ₁₂(U), and the complements of them is 

called( M-S₁₂c
-Rough, M-P₁₂c

-Rough, M-β₁₂c
-rough, M-α₁₂c

-rough and M-γ₁₂c
-rough), and the family of 

complements is M-S₁₂c
-rough, M-P₁₂c

-rough, M-β₁₂c
-rough, M-α₁₂ c

-rough and  M-γ₁₂ c
-rough.     

    Proposition 3.1: Let (U, MxR, MRx)  be a biminimal structures approximation spaces. Then 

    (1)M-α₁₂(U)≺ M-S₁₂(U) ≺M-γ₁₂(U)≺M-β₁₂(U). 

    (2)M-α₁₂(U)≺M-P₁₂(U) ≺M-γ₁₂(U)≺M-β₁₂(U).  

    Proof :(1)Since MxR(MRx(MRx(X))) ⊆ MRx(MxR (X)), then M-α₁₂(U) ≺ M-S₁₂(U) and MRx (MxR(X)) ⊆ 

(MRx(MxR(X)))∪(MxR(MRx(X))). So M-S₁₂(U) ≺M-γ₁₂(U). Also, (MRx(MxR(X)))∪(MxR(MRx(X))) ⊆ 

MRx((MxR(MRx (X))). Then M-γ₁₂(U)≺M-β₁₂(U). Therefore, M-α₁₂(U)≺ M-S₁₂(U) ≺M-γ₁₂(U)≺M-β₁₂(U).    

    (2) Since  MRx(X) ⊆X, then MxR (MRx(MxR(X))) ⊆ MxR (MRx(X)). Thus M-α₁₂(U)≺M-P₁₂(U), and MxR (MRx 

(X)) ⊆ (MRx (MxR (X))) ∪ (MxR (MRx(X))). So M-P₁₂(U) ≺M-γ₁₂(U). And (MRx (MxR(X))) ∪ (MxR(MRx(X))) ⊆ 

MRx ((MxR (MRx(X))). Thus M-γ₁₂(U)≺M-β₁₂(U). So M-α₁₂(U)≺M-P₁₂(U) ≺M-γ₁₂(U)≺M-β₁₂(U).     

The following example illustrated that the reverse inclusion in Proposition 3.1 was not satisfied. 

    Example3.1: Let R be a binary relation defined on a non empty set U={a,b,c,d} defined by R={(a,a), (a,b), 

(a,c), (d,d), (d,c)}. Then 

    MxR ={{a,b,c},{c,d}, U, φ}. 

    MxR
c
 ={{d}, {a,b}, U, φ}. 

    MRx={{a}, {d}, {a,d}, U, φ}. 

    MRx
c
={{b,c,d}, {a,b,c}, {b,c}, U, φ}. 

    M-S₁₂-rough ={{b,c,d}, {a,b,c}, {c,d}, U, φ}. 

    M-α₁₂-rough={U, φ, {c,d}, {a,b,c}}. 

    M-β₁₂-rough={φ, U, {a}, {d}, {a,b}, {a,c}, {a,d}, {b,d}, {c,d}, {a,b,c}, {a,b,d}, {b,c,d}, {a,c,d}}. 

    M-P₁₂-Rough={φ, U, {a}, {d}, {a,b}, {a,c}, {a,d}, {c,d}, {a,b,c}, {a,b,d}, {a,c,d}}. 

    M-γ₁₂-rough={φ, U, {a}, {d}, {a,b}, {a,c}, {a,d}, {b,d}, {c,d}, {a,b,c}, {a,b,d}, {b,c,d}, {a,c,d}}.   

So M-S₁₂-rough ≮ M-α₁₂-rough, M-γ₁₂-rough ≮ M-S₁₂-rough,   and  M-β₁₂-rough ≮ M-γ₁₂-rough.     

  Definition3.3: Let (U,MxR, MRx) be a biminimal structure approximation space, and X⊆U.  Then the general 

lower(briefly M-λ₁₂(X)) of X where M-λ₁₂(U)∈{M-α₁₂(U), M-S₁₂(U), M-γ₁₂(U), M-P₁₂(U), M-β₁₂(U)} is 

defined by M-λ₁₂(X)=∪{G:G∈M-λ₁₂(U),G⊆X}, then the minimal general lower approximation is denoted by 

Mλ₁₂(X) for any subset X⊆U is defined as Mλ₁₂(X)=M-λ₁₂(X), and the general upper(briefly M-λ₁₂(X)) of X is 

defined by M-λ₁₂(X)=∩{H:H∈M-λ₁₂c
(U),H⊇X}, then the minimal general upper approximation is denoted by 

Mλ₁₂(X)  for any subset X⊆U is defined as Mλ₁₂(X)=M-λ₁₂(X). 
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    Proposition3.2: Let (U, MxR, MRx) be a biminimal structure approximation space, and X⊆U. Then 

    (1) MxR(X) ⊆ Mα₁₂(X) ⊆ MS₁₂(X) ⊆ Mγ₁₂(X) ⊆ Mβ₁₂(X) ⊆ X ⊆ Mβ₁₂(X) ⊆ Mγ₁₂(X) ⊆ MS₁₂(X) ⊆ Mα₁₂(X) ⊆  

MxR(X). 

    (2)MRx(X) ⊆ Mα₁₂(X) ⊆ MP₁₂(X)⊆Mγ₁₂(X) ⊆ Mβ₁₂(X) ⊆ X ⊆ Mβ₁₂ (X) ⊆ Mγ₁₂(X) ⊆ MP₁₂(X) ⊆ Mα₁₂(X) ⊆ MRx 

(X).  

    Proof: (1) MxR(X)=∪{G: G ∈MxR(U), G⊆X} ⊆ ∪{G: G∈M-α₁₂(U), G⊆X} ⊆ ∪{G: G∈M-S₁₂(U), G⊆X} ⊆ 

∪{G: G∈M-γ₁₂(U), G⊆X} ⊆ ∪{G: G∈M-β₁₂(U), G⊆X} ⊆ X ⊆∩{H: H∈M-β₁₂c
(U), H⊇X} ⊆ ∩{H: H∈M-

γ₁₂c
(U), H⊇X} ⊆ ∩{H: H∈M-S₁₂c

(U), H⊇X} ⊆ ∩{H: H∈M-α₁₂c
(U), H⊇X} ⊆∩{H: H ∈ MXR

c
(U), H⊇X}. So 

MxR(X) ⊆ Mα₁₂ (X) ⊆ MS₁₂(X) ⊆ Mγ₁₂(X) ⊆ Mβ₁₂(X) ⊆ X ⊆ Mβ₁₂(X) ⊆ Mγ₁₂(X) ⊆ MS₁₂ (X) ⊆ Mα₁₂(X) ⊆ MxR(X). 

    (2)MRx(X)=∪{G:G∈MRx(U),G⊆X}⊆∪{G:G∈M-α₁₂(U),G⊆X}⊆∪{G:G∈M-P₁₂(U),G⊆X}⊆∪{G:G∈M-

γ₁₂(U),G⊆X}⊆∪{G:G∈M-β₁₂(U),G⊆X}⊆X ⊆∩{H:H∈M-β₁₂c
(U),H⊇X}⊆∩{H:H∈M-

γ₁₂c
(U),H⊇X}⊆∩{H:H∈M-P₁₂c

(U),H⊇X}⊆∩{H:H∈M-α₁₂c
(U),H⊇X}⊆∩{H:H∈MRx

c
(U),H⊇X}. Thus 

MRx(X)⊆Mα₁₂(X)⊆MP₁₂(X)⊆Mγ₁₂(X)⊆ Mβ₁₂ (X)⊆ X ⊆Mβ₁₂(X)⊆Mγ₁₂(X)⊆MP₁₂(X)⊆Mα₁₂(X)⊆MRx(X).     

    The following example illustrated the previous proposition. 

    Example3.2: From Exmaple 3.1 if X={a,b,d}, then Mα₁₂(X) = φ, Mβ₁₂(X) ={a,b,d}. So, Mα₁₂(X)⊆Mβ₁₂(X).  If 

Y={a,b,c}, then MS₁₂(Y)=U, Mβ₁₂(Y) ={a,b,c}. So, Mβ₁₂(Y) ⊆ MS₁₂(Y).     

    Proposition 3.3: Let (U,MxR, MRx)  be a biminimal structure approximation space, and X , Y⊆U. Then for all 

M-λ₁₂∈{M-α₁₂, M-S₁₂, M-γ₁₂, M-P₁₂, M-β₁₂} 

    (1) Mλ₁₂ (φ)= φ =Mλ₁₂(φ), Mλ₁₂(U)= U =Mλ₁₂(U). 

    (2) If X⊆Y then Mλ₁₂(X) ⊆ Mλ₁₂(Y). 

    (3) If X⊆Y then Mλ₁₂(X) ⊆ Mλ₁₂(Y). 

    (4) Mλ₁₂(X∪Y) ⊇ Mλ₁₂(X)∪ Mλ₁₂(Y). 

    (5) Mλ₁₂(X∪Y) ⊇ Mλ₁₂(X)∪ Mλ₁₂(Y). 

    (6) Mλ₁₂ (X∩Y) ⊆ Mλ₁₂ (X)∩ Mλ₁₂(Y). 

    (7) Mλ₁₂(X∩Y) ⊆ Mλ₁₂ (X)∩ Mλ₁₂ (Y). 

    (8) Mλ₁₂ (X
c
) = (Mλ₁₂ (X))

c
. 

    (9) Mλ₁₂(X
c
) =( Mλ₁₂(X))

c
. 

    Proof: (1) Mλ₁₂(φ)=∪{xR:xR ⊆φ}=φ=∪{xR:xR∩φ ≠ φ}= Mλ₁₂( φ).  Mλ₁₂(U) = ∪{xR:xR⊆U}=U=Mλ₁₂(U) 

=∪{xR:xR∩U≠φ}.     

    (2)Since  X⊆Y, then Mλ₁₂(X)=∪{xR:xR⊆X}⊆∪{xR:xR⊆X⊆Y}⊆∪{xR:xR⊆Y}⊆ Mλ₁₂(Y). 

    (3)Since  X⊆Y, then Mλ₁₂(X)=∪{xR:xR∩X≠φ}⊆∪{xR:xR∩Y≠φ}⊆ Mλ₁₂(Y). 

   (4) Since X ⊆X ∪ Y and Y ⊆X ∪ Y, then Mλ₁₂(X) = ∪{xR:xR⊆X}⊆ ∪{xR:xR⊆X∪Y}⊆Mλ₁₂(X∪Y). Also, 

Mλ₁₂(Y) = ∪{xR:xR⊆Y}⊆ ∪{xR:xR⊆X∪Y}⊆ Mλ₁₂(X∪Y). So, Mλ₁₂(X∪Y) ⊇ Mλ₁₂(X)∪Mλ₁₂(Y).     

    (5) Since X ⊆X ∪ Y and Y ⊆X ∪ Y, then Mλ₁₂(X) = ∪{xR:xR∩X≠φ}⊆∪{xR:xR∩(X∪Y) ≠φ}⊆ Mλ₁₂(X∪Y). 

Also, Mλ₁₂(Y) = ∪{xR:xR∩Y≠φ}⊆∪{xR:xR∩(X∪Y)≠φ}⊆ Mλ₁₂(X∪Y). So, Mλ₁₂(X∪Y) ⊇ Mλ₁₂(X)∪ Mλ₁₂(Y).    
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    (6) Since X∩Y⊆X and X∩Y⊆Y, then Mλ₁₂(X∩Y) ⊆ Mλ₁₂(X), and Mλ₁₂(X∩Y) ⊆ Mλ₁₂(Y). So, Mλ₁₂(X∩Y) ⊆ 

Mλ₁₂(X)∩ Mλ₁₂(Y).  

    (7) Similar to the proof of (6).    

    (8) Mλ₁₂(X
c
)=∪[{H: H∈ M-λ₁₂c

(U),H ⊆X
c
}]=∪{(H

c
): (H

c
)

c
 ∈ M-λ₁₂c

(U), H
c
 ⊇ X}]=  [∩{H

c
 : H

c
 ∈ M-λ₁₂c

 

(U), H
c
}⊇ X}]

c
=(Mλ₁₂(X)) 

c
.     

    (9) Mλ₁₂ (X
c
)=(∩{H

c
: H

c
 ∈ M-λ₁₂c

(U), H
c
 ⊆ X})

c
 = [∪{F : F ∈ M-λ₁₂(U), F ⊆ X}]

C
 = ( Mλ₁₂(X))

c
. 

    The inverse of Property (4) is not generally true, as shown in the following example.   

    Example 3.4: From Example 3.2 : if M-λ₁₂=M-α₁₂ and X={c}, Y={d}. Then Mα₁₂(X∪Y)={c,d}. And 

Mα₁₂(X)=φ , Mα₁₂(Y)=φ.Then Mα₁₂(X∪Y)⊈ Mα₁₂(X)∪Mα₁₂(Y). 

    The inverse of Property (5) is not generally true, as shown in the following example. 

    Example 3.5: From Example 3.2 : If M-λ₁₂ = M-β₁₂ and X={a}, Y={d}. Then Mα₁₂(X∪Y)=U, and 

Mβ₁₂(X)={a}, Mβ₁₂(Y)={d}.Then Mα₁₂(X∪Y) ⊈ Mβ₁₂(X)∪ Mβ₁₂(Y). 

    The inverse of Property (6) is not generally true, as shown in the following example.     

    Example 3.6: From Example 3.2 : If M-λ₁₂=M-S₁₂ and X={a,b,c}, Y={b,c,d}, then MS₁₂(X∩Y)=φ , 

MS₁₂(X)={a,b,c} , MS₁₂(Y)={b,c,d}. So, MS₁₂(X∩Y) ⊉ MS₁₂(X) ∩ MS₁₂(Y).     

    Proposition 3.4:  Let (U,MxR, MRx)  be a biminimal structure approximation space, and X⊆U. Then for all 

M-λ₁₂∈{M-α₁₂, M-S₁₂, M-γ₁₂, M-P₁₂, M-β₁₂} . 

    (1) Mλ₁₂(X)≠Mλ₁₂(Mλ₁₂(X)) ≠ Mλ₁₂(Mλ₁₂(X)). 

    (2)Mλ₁₂(X) ≠ Mλ₁₂(Mλ₁₂(X))≠Mλ₁₂(Mλ₁₂(X)). 

    The following example illustrated this idea. 

    Example 3.7: From Example 3.2. 

    1) If M-λ₁₂=M-α₁₂ and X={c,d}, then Mα₁₂(X)={c,d}, Mα₁₂ ( Mα₁₂(X)) = {c,d}.But, Mα₁₂(Mα₁₂(X)) = U.  So, 

Mλ₁₂(Mλ₁₂(X)) ≠ Mλ₁₂(Mλ₁₂(X)).    

    2) If M-λ₁₂=M-S₁₂ and X={b}, then MS₁₂(X)={a,b}, MS₁₂(MS₁₂(X))={a ,b}. But MS₁₂( MS₁₂(X)) = φ. So, 

MS₁₂(MS₁₂(X)) ≠ MS₁₂( MS₁₂(X)).  

    Proposition 3.5: Let (U,R) be a generalized approximation space generated by any binary relation R then for 

any  two subsets X and Y⊆U we have Mλ₁₂(X-Y)⊆ Mλ₁₂(X)- Mλ₁₂(Y) for all M-λ₁₂∈{M-α₁₂, M-S₁₂, M-γ₁₂, M-

P₁₂, M-β₁₂}.     

    Proof: As X-Y=X∩ Y
c
, then Mλ₁₂(X-Y)=Mλ₁₂(X∩ Y

c
). From the Proposition (3.3) Mλ₁₂(X∩Y

c
)⊆ 

Mλ₁₂(X)∩Mλ₁₂(Y
c
)⊆ Mλ₁₂(X)∩(Mλ₁₂(Y))

c
}⊆Mλ₁₂(X)- Mλ₁₂(Y). So, Mλ₁₂(X-Y)⊆ Mλ₁₂(X)- Mλ₁₂(Y). 

The following example showed that the inverse of Proposition 3.5 is not generally true.     

    Example3.8: From Example (3.1) If M-λ₁₂=M-S₁₂ and X={b,c,d}, Y={c,d}, then MS₁₂(X)={b,c,d}, 

MS₁₂(Y)={c,d}, and MS₁₂(X-Y)=MS₁₂({b}) = φ. But MS₁₂(X)-MS₁₂(Y) ={b}, then Mλ₁₂(X) - Mλ₁₂(Y) ⊈  Mλ₁₂(X-Y).     
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   Lemma3.1: Let (U, MxR, MRx) be a biminimal structure approximation space, and X⊆U. Then (clλ₁₂(X))
c
 = 

Intλ₁₂(X
c
) for all λ₁₂ ∈ {α₁₂, S₁₂, γ₁₂, P₁₂, β₁₂}.    

    Proof: For all M-λ₁₂∈{M-α₁₂, M-S₁₂, M-γ₁₂, M-P₁₂, M-β₁₂}, let X ⊆ U.  Then (cl(X))
c
 = [∩{H : H ∈ M-

λ₁₂c
(U), H ⊇ X}]

c
 = [∪{H

c
 : H

c
 ∈ M-λ₁₂(U), H

c
 ⊆ X

c
}] = Intλ₁₂(H

c
) = Intλ₁₂(X

c
). 

IV –Minimal generalization of rough concepts 

In this section we introduced the definition of definability of approximation space in biminimal structure 

approximation space, and proved some of its properties. Also, we defined the accuracy measure of 

biminimal structure approximation space.  

    Definition 4.1: Let (U, MxR, MRx) be a biminimal structure approximation space,  and X⊆U .Then for all M-

λ₁₂∈{M-α₁₂, M-S₁₂, M-γ₁₂, M-P₁₂, M-β₁₂}. 

    (1) X is totally minimal λ₁₂₋definable (M-λ₁₂₋exact) if Mλ₁₂(X)=X=Mλ₁₂(X). 

    (2) X is internally minimal λ₁₂₋definable if Mλ₁₂(X)=X and Mλ₁₂(X)≠X. 

    (3) X is externally minimal λ₁₂₋definable if Mλ₁₂(X) ≠X and Mλ₁₂(X)=X. 

    (4) X is minimally λ₁₂₋undefinable (M-λ₁₂₋rough) If Mλ₁₂(X) ≠X and Mλ₁₂(X) ≠X. 

    Example 4.1: From Example 3.1, then 

    (1) If M-λ₁₂=M-γ₁₂ and X={a}, Mγ₁₂(X)={a}, and Mγ₁₂(X)={a}. So, Mγ₁₂(X) = X = Mγ₁₂(X). Thus, X is M-

γ₁₂-exact set. 

    (2) If M-λ₁₂=M-S₁₂ and X={c,d}, then MS₁₂(X)={c,d} and Mγ₁₂(X) = U. So, Mγ₁₂(X)=X . But Mγ₁₂(X)≠X. 

Therefore, X is internally minimal γ₁₂₋definable. 

    (3) If M-λ₁₂=M-α₁₂ and X={a,b}, then Mα₁₂(X)=φ ≠X, Mα₁₂(X)={a, b}=X. So, X is externally minimalα₁₂-

definable. 

    (4) If M-λ₁₂=M-S₁₂ and X={b}, then MS₁₂(X) = φ, MS₁₂(X) = {a,b}, MS₁₂(X) ≠ X and MS₁₂(X) ≠ X.  So, X is 

M-S₁₂-rough set. 

   Definition 4.2: Let (U, MxR, MRx)  be a biminimal structure approximation space, then we can introduce the 

generalized accuracy measure for any set X⊆U (denoted by ACCλ₁₂) as the following 

    ACCλ₁₂ =((∣Mλ₁₂(X)∣)/(∣Mλ₁₂(X)∣)),Mλ₁₂(X)≠φ, where M-λ₁₂∈{M-α₁₂, M-S₁₂, M-γ₁₂, M-P₁₂, M-β₁₂} and ∣X∣ 

denoted the cardinality of the set X. The number of generalized accuracy measure for any set X⊆U is the 

measure of the degree of exactness. So, by this action we will figure out which is the best of our definition for 

M-λ₁₂- lower and  M-λ₁₂-upper approximations. So, 

    1) 0 ≤ ACCM₁₂ ≤ ACCα₁₂ ≤ ACCS₁₂ ≤ ACCγ₁₂ ≤ ACCβ₁₂ ≤1  

    2)  0 ≤ ACCM₁₂ ≤ ACCα₁₂  ≤ ACCP₁₂ ≤ ACCγ₁₂ ≤ ACCβ₁₂≤1 

The following example illustrated the comparison between ACCS₁₂ and ACCβ₁₂ in  Table(1) 
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Example 4.2:  From Example 3. 

X ACCS₁₂ ACCβ₁₂ 

{c,d} 1/2 1 

{a,c,d} 1/2 ¾ 

{a,b,c} 3/4 1 

{b,c,d} 3/4 1 

Table(1:The comparison between ACCS₁₂ and ACCβ₁₂. 

 By using the definition of rough concepts at we can tends to exactness of many  sets ,this will lead to accurate 

results. 

  Definition4.3: Let (U, MxR, MRx)  be a biminimal structure approximation space, and X,Y⊆U. Then for all M-

λ₁₂∈{M-α₁₂, M-S₁₂, M-γ₁₂, M-P₁₂, M-β₁₂}. 

(1) X ⫇λ₁₂Y if Mλ₁₂(X) ⊂ Mλ₁₂(Y).  

(2)  X⊂λ₁₂Y if Mλ₁₂(X) ⊂Mλ₁₂(Y).  

    Example 4.3: From Example 3.1: 

    (1) If M-λ₁₂=M-S₁₂ and X={d}, Y={a,b}, then MS₁₂ (X) = φ, MS₁₂(Y) = φ, and Mγ₁₂(X)⊆ MS₁₂(Y). Thus 

X⫇S₁₂Y. 

    (2) If M-λ₁₂=M-β₁₂ and X={a,b}, Y={a,d}, then Mβ₁₂ (X) ={a,b}, Mβ₁₂ (Y)=U,  and Mβ₁₂ (X) ⊆ Mβ₁₂(Y). So 

X⊂β₁₂Y. 

Definition4.4: Let (U, MxR, MRx) be a biminimal structure approximation space, and X⊆U and any element 

x∈U.  Then for all M-λ₁₂∈{M-α₁₂, M-S₁₂, M-γ₁₂, M-P₁₂, M-β₁₂}. 

    (1) If x∈λ₁₂X if and only if x ∈ Mλ₁₂ (X). 

    (2) If x∈ λ₁₂ X  if and only if x ∈  Mλ₁₂(X). 

    Proposition4.1: Let (U,MxR, MRx) be a biminimal structure approximation space, and X⊆U. Then  for any 

x∈U, and M-λ₁₂∈{M-α₁₂, M-S₁₂, M-γ₁₂, M-P₁₂, M-β₁₂}, the following properties hold: 

    (1) If x∈ λ₁₂X, then x∈ X. 

    (2) If x ∉λ₁₂X, then x ∉X. 

    Proof: (1) Let x ∈λ₁₂X then x∈ Mλ₁₂(X) and Mλ₁₂(X)⊆X. So, x∈X. 

    (2) Let x ∉X then x ∉Mβ₁₂(X) and X ⊆ Mβ₁₂(X). Therefore, x ∉X 

    The inverse of Definition 4.4 is not generally true. 

        Example 4.4: From Example 3.1 if M-λ₁₂=M-S₁₂ and X={a,c,d},x=a, then MS₁₂(X)={c,d}. But x ∉S₁₂X. 

    Also, if M-λ₁₂=M-S₁₂ and X={b},x=a, MS₁₂(X)={a,b}, then x∉S₁₂X. But  x ∉X. 

 

V-Application of the biminimal structure approximation space on Covid-19. 

In this section we applied the concept of biminimal approximation space in a very critical problem and 

we tried to get more accurate results by reducing the condition. 

∼ 

∼ 

∼ 
∼ 

∼ 
 ∼ 
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    The sort of pneumonia brought about by the 2019 novel Covid disease(covid-19) is profoundly irresistible 

infection and the continuous flare-up has been proclaimed by WHO as a worldwide general wellbeing crisis. 

Coronavirus pneumonia was first announced in Wuhan then it Spread universally. This is clinical highlights of 

four pregnant ladies with affirmed COVID-19 pneumonia and inspect the upward transmission capability of 

COVID-19. Every one of the four patients had a cesarean segment in their third trimester. Let U={P₁,P₂,P₃,P₄} 

be a set of patients and H = {H₁,H₂,H₃,H₄,H₅,H₆} be a set of symptoms represented as (H₁ is fever in admission 

,H₂ is cough ,H₃ is dyspnea, H₄ is sore throat ,H₅ is diarrhea , H₆ is chest pain ) , D represented the decision of 

the covid-19 in which y means the patient has the virus and n means the patient has no virus as shown in Table 

(2).  

 P₁ P₂ P₃ P₄ 

H₁ y y y y 

H₂ y y n y 

H₃ y N n y 

H4 n N n y 

H5 n N n n 

H6 y N n n 

D y Y n y 

Table (2: Represented the relation between the symptoms of the patients and the decision of the covid-19). 

 

    Table (3) represented similarities between patient's symptoms where the degree of similarity μ(x,y) is defined 

as μ(x,y)=((∑_{i=1}ⁿ(a_{i}(x)=a_{i}(y)))/n) where n is the number of symptoms. We defined the relationship 

in each issue according to the expert's requirement. The first minimal strucutre M_{xR} was defined by the 

relation aℜ b if μ(a,b)>0.8 and the second minimal structure M_{Rx} was defined by the relation aℜ b if 

μ(a,b)>0.6. The patients had covid-19 were denoted by B₁, while the patients had not covid-19 were denoted by 

B₂. 

 P1 P2 P3 P4 

P1 1 4/6 3/6 4/6 

P2 4/6 1 5/6 4/6 

P3 3/6 5/6 1 1/6 

P4 4/6 4/6 1/6 1 

Table (3: Represented the degree of similarities between patient's symptoms 

MxR={φ, P, {P₁}, {P₂,P₃}, {P₄}}  and M_{Rx}={φ, P, {P_{1,}P₂,P₄}, {P₃}},  then MxR
C
}={φ, P, {P₂,P₃,P₄}, 

{P₁,P₄}, {P₁,P₂,P₃}}. M_{Rx}^{C}={φ, P, {P₃}, {P₁,P₂,P₃}}. Now we calculate 

    M-α₁₂(P)={φ, p, {p₁}, {p₄} , {p₁,p₄}, {p₂,p₃}, {p₁,p₂,p₃}, {p₂,p₃,p₄}}. 

    M-S₁₂(P)={φ, p, {p₁}, {p₄},  {p₁,p₂},  {p₁,p₄},  {p₂,p₃},  {p₂,p₄}, {p₁,p₂,p₃}, {p₁,p₂,p₄}, {p₂,p₃,p₄}}.  

    M-P₁₂(P)={φ, p, {p₁}, {p₄},  {p₁,p₃},  {p₁,p₄} ,  {p₂,p₃}, {p₃,p₄}, {p₁,p₂,p₃}, {p₁,p₃,p₄}, {p₂,p₃,p₄}}. 

    M-γ₁₂(P) = {φ, p, {p₁}, {p₄},  {p₁,p₂}, {p₁,p₃}, {p₁,p₄}, {p₂,p₃},  {p₂,p₄}, {p₃,p₄}, {p₁,p₂,p₃}, {p₁,p₂,p₄}, 

{p₁,p₃,p₄}, {p₂,p₃,p₄}} , 

    M-β₁₂(P)={φ,p,{p₁},{p₂},{p₄}, {p₁,p₂},{p₁,p₃}, {p₁,p₄}, {p₂,p₃}, {p₂,p₄}, {p₃,p₄}, {p₁,p₂,p₃}, {p₁,p₂,p₄}, 

{p₁,p₃,p₄}, {p₂,p₃,p₄}}.   

    M-α₁₂c
(P) = {φ, P, {p₂,p₃,p₄}, {p₁,p₂,p₃}, {p₂,p₃}, {p₁,p₄}, {p₄}, {p₄}}. 

    M-S₁₂c
(P) = {φ, P, {p₂,p₃,p₄}, {p₁,p₂,p₃}, {p₁,p₄}, {p₃,p₄}, {p₁,p₃},  {p₂,p₃}, {p₄}, {p₃},  {p₁}}. 
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    M-P₁₂c
(P) = {φ, p, {p₂,p₃,p₄}, {p₁,p₂,p₃}, {p₂,p₃}, {p₂,p₄}, {p₁,p₄}, {p₁,p₃}, {p₄}, {p₁}, {p₃}}. 

    M-γ₁₂c
(P) = {φ, p, {p₂,p₃,p₄}, {p₁,p₂,p₃}, {p₃,p₄}, {p₁,p₂}, {p₂,p₃}, {p₂,p₄}, {p₁,p₄}, {p₁,p₃}, {p₄}, {p₂},  

{p₁}, {p₃}}. 

    M-β₁₂c
(P) = {φ, p, {p₂,p₃,p₄}, {p₁,p₃,p₄}, {p₁,p₂,p₃}, {p₃,p₄}, {p₁,p₂}, {p₂,p₃}, {p₂,p₄}, {p₁,p₄}, {p₁,p₃}, 

{p₄}, {p₂}, {p₁}, {p₃}}.  

    B₁={p₁,p₂,p₄}, MxR(B₁)={p₁,p₄}, MxR(B₁)= P, ACCMxR (B₁)=(1/2), MS₁₂(B₁) ={p₁,p₂,p₄}, MS₁₂ (B₁)=P, 

ACCS₁₂(B₁) = (3/4). 

    We show that M-α₁₂(U) ≺ M-S₁₂(U) ≺ M-γ₁₂(U) ≺  M-β₁₂(U) is satisfied. 

    The accuracy of B₁ through the lower and upper approximation of MxR (ACCMxR(B₁)=(1/2)) and the accuracy 

of B₁ through the lower and upper of M-S₁₂(ACCS₁₂(B₁)=(3/4) ). So we found that the accuracy of M-S₁₂ is 

greater than the accuracy of MxR. 
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