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Abstract: In real-world situations, complex networks are prevalent. Free-scale networks, small-world networks, and fractals
are examples of complex networks. In this paper, we generalize the models presented for El Atik and Ma. We discuss some
topological properties of the proposed model like the clustering coefficient and the diameter. Also, the entropy and the number
of spanning trees are significant measures related to the reliability and communication aspects of the network. Therefore, we
calculate analytically the entropy and number of spanning trees of the model, which clarifies that the results of El Atik et al. are
unerring whereas the given results of Ma and Yao are erroneous.
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1 Introduction

Natural phenomena are easily expressed with the aid of networks. A complex network is a distinguished
category of graph networks which is ramified with unpredictable topological properties. Researchers have primarily
studied complex networks with a focus on free-scale networks, small-world networks, and fractals. A free-scale
network [35] means that its degree distribution goes along with a power law which can be expressed mathematically
as

P(d)∼ d−δ , 2 < δ < 3.

A small-world network [17] is characterized by its large clustering coefficient, a lower diameter, and a small
average path length. While a fractal network [34] is distinguished by a hierarchical property called
“self-similarity” allowing it to replicate its structure and dynamics. The study of these networks has intensively
been observed and discussed as it has numerous applications in various fields like mathematics, computer science,
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biology, biochemistry, physics even social communications [18, 22, 29]. For more applications of complex
networks, see [1, 2, 5–7, 9, 11, 14, 31].
The problem of finding the topological measurements of a network and their effect on the dynamical processes of
the network is still considered a significant challenge. Sub-graphs of the underlying network play important roles
in characterizing the structure of the network and identifying the dynamical features operating on it. Spanning
trees are one of the most fundamental categories among a range of sub-graphs. Reliability [8], transport [33], and
connectivity [24] are only a few of the applications.
The number of spanning trees of a network is associated to the resistance [5] among the vertices of the network,
an essential invariant for random walks [3] that has found a variety of applications in many fields such as physics,
biology, and computer science. Furthermore, the number of spanning trees of a network is also related to
connectivity, a crucial chemistry index according to the work of Kan et al. [24] who counted the spanning trees of
some molecular graphs.
The number of spanning trees τ(G) of a graph G is algebraically evaluated by using Kirchhoff’s matrix-tree
theorem, which shows that this number can be found in a polynomial time and is equal to any cofactor of the
Laplacian matrix of the graph. In particular, let 0 = λ1(G)≤ λ2(G)≤ ...≤ λn(G) be the Laplacian eigenvalues of
a graph G of order n, then τ(G) is given by

τ(G) =
1
n

n

∏
i=2

λi(G) (1)

For complex networks, applying Kirchhoff’s matrix-tree theorem to enumerate τ(G) is a highly cost and
tedious task [12,13,16]. Most researchers have provided some procedures to bypass the tiresome and complicated
calculations of large determinants. Some authors [15, 20, 21] gave upper bounds to estimate this number.
Whereas, several research works [23, 26, 28] presented an exact solution for τ(G) analytically.
This paper is constructed as follows. Section 2 is demonstrated to present some definitions and results from graph
theory that would be used throughout the paper. In Section 3, we investigate the topological characteristics of a
class of small-world F(t) introduced in [19, 27] including the average degree, clustering coefficient, and diameter.
The entropy and number of spanning trees of F(t) are also discussed and coincided with the results obtained
in [19] which enhances their validity. In Section 4, the generalization of model F(t) is proposed and its
topological properties are studied. As a consequence, we find that model F(t) has no small-world feature because
of vanishing its clustering coefficient. We give an exact formulas for the entropy and number of spanning trees of
F(t). Section 5 is devoted to a brief summary.

2 Preliminaries

We mention some necessary concepts and facts from graph theory. (For more details, see [4,10,32].) Let G= (V,E)
be a graph whose set of vertices and set of edges are V and E respectively. Let n = |V | and e = |E| be the number of
vertices of G ”known as graph-order” and the number of edges of G ”also known as graph-size” respectively. The
diameter D(G) of graph G is a topological measure for the structure of G that equals the biggest distance between
a pair of vertices of G. Suppose that v ∈ V with degree dv. Then, the clustering coefficient of v, denoted by Cv, is
another topological measure of G which characterizes how the neighbors of v are likely connected. The clustering
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coefficient Cv of v is the portion of the entire number of edges ev existing between the neighbors of v to the number
dv(dv−1)

2 of all possible edges between them. That is to say,

Cv =
2ev

dv(dv −1)
. (2)

Definition 1. The clustering coefficient C of G is the average value of the clustering coefficients of the whole
vertices of G, i.e.,

C =

∑
v∈V

Cv

n
. (3)

Definition 2. The diameter D of G is the greatest shortest path between any pair of vertices of G.

A sub-graph G′ = (V ′,E ′) of G is called a spanning sub-graph of G if V ′ =V and E ′ ⊆ E.

Definition 3. A spanning tree T of G is a spanning sub-graph which is a tree.

The number of spanning trees τ(G) of a graph G is a vital topological parameter of G which measures the reliability,
diffusion properties and connectivity of G.
For a cycle C of length ℓ, we have the following facts:

–D =
⌊
ℓ
2

⌋
–C =

{
1 if ℓ= 3,
0 otherwise.

–τ(C) = ℓ.

Let Ci be a cycle of length ℓi, for i = 1,2, ..., I. Assume that Γ =
I⋃

i=1
Ci, i ∈Z+ is a graph constructed by connecting

finite number of cycles Ci where the intersection of any two cycles of its components is one vertex at most (see
Figure 1).

Fig. 1: An example of Γ -graph with τ(Γ ) = 5400.
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Theorem 1. (See [30].) The number of spanning trees of a Γ -graph is the product of the number of spanning trees
of each cycle of Γ . That is,

τ(Γ ) =
I

∏
i=1

τ(Ci) =
I

∏
i=1

ℓi, (4)

where Ci is a cycle of length ℓi.

Define P and C to be the set of paths of length 2 and the set of cycles of length 3 respectively. Two operations
will be defined as:

–Operation 1: In operation 1, each edge e ∈ E would be replaced with a path P ∈ P and this operation can be
denoted by g1 : E → P .

–Operation 2: In operation 2, each vertex v ∈ V would be mapped to a cycle C ∈ C and this operation can be
denoted by g2 : V → C .

For example, let us apply the above operations to a cycle of length 3. One could obtain the results depicted in
Figure 2.

Fig. 2: The diagrams of operations g1 and g2

3 Special case: Model F(t) and its topological properties

Model F(t) can be constructed by a recursive process as follows:
At t = 0, F(0) is a cycle of length 3. For t ≥ 1, F(t) is constructed with the aid of F(t − 1) by applying the
operations g1 and g2 to F(t − 1). That is, each edge of F(t − 1) is changed out to a path of length 2 and each
vertex of F(t − 1) is mapped to a cycle of length 3. Let nt and et be the order and size of F(t) respectively, then
n0 = 3,e0 = 3,n1 = 12,e1 = 15,... and so on.The process of generating F(t) can be repeated indefinitely, see Figure
3. After t time replications, the order and size of F(t) will follow the following recurrence relations:

nt = 3nt−1 + et−1, t ≥ 1 (5)

et = 3nt−1 +2et−1, t ≥ 1 (6)
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From (5) and (6), we can derive the following difference equations:

nt −5nt−1 +3nt−2 = 0 (7)

et −5et−1 +3et−2 = 0 (8)

Solving (7) and (8) gives

nt = c1

(
5+

√
13

2

)t

+ c2

(
5−

√
13

2

)t

, (9)

et = c3

(
5+

√
13

2

)t

+ c4

(
5−

√
13

2

)t

, (10)

where

c1 =
3
√

13+9
2
√

13
, and c2 =

3
√

13−9
2
√

13
, (11)

c3 =
3
√

13+15
2
√

13
, and c4 =

3
√

13−15
2
√

13
. (12)

Next, the topological characteristics of model F(t) prescribed above are determined exactly. We emphasize the
average degree, clustering coefficient, diameter, number of spanning trees and entropy.

3.1 Average degree of model F(t)

The average degree is an important topological invariant that determines the irregularity degrees of the network. It
is defined as the arithmetic mean of the degrees of all vertices.

Lemma 1. The average degree of F(t) satisfies

⟨d⟩= 2et

nt
≈ 2c3

c1
≈ 2.6056. (13)

We note that model F(t) is sparse because the average degree is small.

3.2 Clustering coefficient of model F(t)

The clustering coefficient is one of the most important parameters of network, since it provides a way to assess
the network’s local structure. Recall that the clustering coefficient Cv of a vertex v with degree dv is the portion of
the number of edges that exist between the dv neighbors of v to the number of the whole edges between them. The
clustering coefficient C of the network is the average value of the clustering coefficients of all vertices in the
network. Now, we calculate Cv,∀v ∈ F(t) and C of F(t).
For F(0), there are 3 vertices of degree 2 each of which has a clustering coefficient equals 1. For F(1), there are 6
vertices of degree 2 whose clustering coefficient equals 1 and 3 vertices of degree 4 whose clustering coefficient
is 1

6 . Generally speaking, the values of the clustering coefficient Cv of all vertices of degree dv in model
F(t), t > 1 are given in the following tables.
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Fig. 3: The diagrams of model F(t) at t = 0,1,2

dv 2 2 4 6 ... 2t 2t+2
cv 0 2

2×1
2

4×3
2

6×5 ... 2
2t(2t−1)

2
(2t+2)(2t+1)

The clustering coefficient C of model F(t) is obtained from the following lemma.

Lemma 2. For sufficiently large t, the clustering coefficient C of model F(t) is given by

C ≈ 0.4973 (14)

Proof: Clearly,

C =


1 t = 0,

0.5417 t = 1,
0.5039 t = 2,

To calculate C for F(t) with sufficiently large t, we need to compute the probability pv =
nv
nt

, where nv is the
number of vertices whose degree is dv. We mark down the clustering coefficient spectrum of model F(t) in the
given table.

dv 2 2 4 6 ... 2t 2t+2
Cv 0 1 1

6
1
15 ... 1

t(2t+1)
1

(t+1)(2t+2)

pv
et−1
nt

2nt−1
nt

2nt−2+et−2
nt

2nt−3+et−3
nt

... 2n0+e0
nt

e0
nt

From the above table, we find that C of F(t) for sufficiently large t is given by

C = ∑ pvcv ≈
2nt−1

nt
+

2nt−2 + et−2

6nt
+

2nt−3 + et−3

15nt
≈ 0.4973 (15)
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3.3 Diameter of model F(t)

Lemma 3. For t ≥ 1, the exact solution of diameter D(t) of the model F(t) is

D(t) =

{
1 t = 0,

D(t −1)+2t−1 ×3 t ≥ 1.
(16)

Proof: For t = 0, the diameter of F(0) equals 1, and we may say that D(0) = 1. For t = 1, the diameter of F(1)
equals 4, that is D(1) = 4 = 1+3. Also, for t = 2, the diameter of F(2) is 10, D(2) = 10 = 4+2×3. It is clear that
the structure of F(t) can be decomposed to nt−1 cycles of length 20 × 3, nt−2 cycles of length 2× 3, ...,n0 cycles
of length 2t−1 ×3, and one cycle of length 2t ×3. Therefore D(t) = D(t −1)+2t−1 ×3.

3.4 The number of spanning trees of model F(t)

The number of spanning trees of a network is a vital parameter relevant to the topological attributes and dynamic
characteristics of the network. However, counting spanning trees of complex networks and investigating their
properties is computationally demanding.
Recall that at any iteration t = T , the structure of F(t) can be decomposed to nT−1 cycles of length 20 × 3, nT−2

cycles of length 2×3, ...,n0 cycles of length 2T−1 ×3, and one cycle of length 2T ×3, we can state the following
theorem.

Theorem 2. The number of spanning trees of F(t) model is given by

τ(F(t)) = 2t+λ ×31+µ , (17)

where λ = 4c1
(3+

√
13)2

(
5+

√
13

2

)t
+ 4c2

(3−
√

13)2

(
5−

√
13

2

)t
−3, µ = 2c1

3+
√

13

(
5+

√
13

2

)t
+ 2c2

3−
√

13

(
5−

√
13

2

)t
.

Proof: From the structure of model F(t), the number of spanning trees of F(t) is given by

τ(F(t)) =

[
t

∏
i=1

(2i−1 ×3)nt−i

]
×2t ×3, t ≥ 1

= 2t+λ ×31+µ , (18)

where

λ = nt−2 +2nt−3 +3nt−4 + ...+(t −1)n0

= c1

t−2

∑
i=0

(t −1− i)(
5+

√
13

2
)i + c2

t−2

∑
i=0

(t −1− i)(
5−

√
13

2
)i

=
4c1

(3+
√

13)2

(
5+

√
13

2

)t

+
4c2

(3−
√

13)2

(
5−

√
13

2

)t

−3. (19)

µ = nt−1 +nt−2 + ...+n0

= c1

t−1

∑
i=0

(
5+

√
13

2

)i

+ c2

t−1

∑
i=0

(
5−

√
13

2

)i

=
2c1

3+
√

13

(
5+

√
13

2

)t

+
2c2

3−
√

13

(
5−

√
13

2

)t

. (20)
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τ(F(t)) Formula of Ma and Yao [27] Formula of El Atik et al [19] Our formula
t = 1 0.0216 2×34 2×34

t = 2 3.1453×10−5 25 ×316 25 ×316

t = 3 7.4714×10−17 221 ×367 221 ×367

t = 4 3.7595×10−68 288 ×3286 288 ×3286

t = 5 4.8852×10−291 2374 ×31228 2374 ×31228

Table 1: A comparison between results of τ(F(t)), t = 1, ...,5

It is obvious that our strategy is based on the divide and conquer procedure. We decompose model F(t) into number
of sub-graphs and analyse each sub-graph individually. Moreover, we combine these results together to determine
the number of spanning trees of F(t). We notice that El Atik et al. [19] as well as Ma and Yao [27] relied on an
induction and iterative procedure. Table 1 shows a comparison between the results of τ(F(t)), t = 1, ...,5 obtained
from our formula and other formulas in [19, 27]. Table 1 depicts that our results coincide with the results in [19].
Moreover, it enhances that the results in [27] are incorrect.

3.5 The entropy of spanning trees of model F(t)

Theorem 3. The entropy of spanning trees of F(t) is

ξ (F(t)) = lim
t→∞

lnτ(F(t))
nt

≈ 0.3962 (21)

Proof: We have

ξ (F(t)) = lim
t→∞

lnτ(F(t))
nt

= lim
t→∞

ln2t+λ ×31+µ

c1at + c2bt ,

where a = 5+
√

13
2 > 1 and b = 5−

√
13

2 < 1.
From equations (19) and (20), the entropy of spanning trees of F(t) can be estimated as follows:

ξ (F(t)) = lim
t→∞

(t +λ ) ln2+(1+µ) ln3
c1at + c2bt

≈ 4
(3+

√
13)2

ln2+
2

3+
√

13
ln3 ≈ 0.3962

4 General case: Model F(t) and its structural properties

In section 3, model F(t) is generated with the aid of a cycle of length 3 which is considered as F(0). Now, we
investigate the general case of a class of small world networks F(t) which is generated by a cycle of length k,
where k ≥ 3. We discuss its construction, analyze its topological properties and compute its number of spanning
trees.
Let P and C be the set of paths of length k−1 and the set of cycles of length k respectively. Define two operations
γ1 and γ2 to be applied on a graph G = (V,E) as follows:
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–In γ1-operation, each edge e ∈ E would be exchanged by a path P ∈ P. Denote this operation by γ1 : E → P.
–In γ2-operation, each vertex v∈V would be associated with a cycle C ∈C. Denote this operation by γ2 : V →C.

Fig. 4: The diagrams of occurrence of operations γ1 and γ2 to cycle of length 4.

Applying operations γ1 and γ2 to a cycle of length 4 is illustrated in Figure 4.
The model F(t) is established as stated below:
At t = 0, F(0) is a cycle of length k ≥ 3. At t ≥ 1, F(t) is generated from F(t − 1) by applying γ1-operation and
γ2-operation to F(t − 1). Let Nt and Et be the order and size of F(t) respectively. It is clear that N0 = k,E0 =

k,N1 = 2k2 −2k and E1 = 2k2 − k. It is easy to get recursive relations for Nt and Et .

Nt = kNt−1 +(k−2)Et−1 (22)

Et = kNt−1 +(k−1)Et−1 (23)

Equations (22) and (23) give us the following difference equations:

Nt +(1−2k)Nt−1 + kNt−2 = 0 (24)

Et +(1−2k)Et−1 + kNt−2 = 0 (25)

Solving (24) and (25) leads to

Nt = α1β
t +α2ε

t (26)

Et = α3β
t +α3ε

t , (27)

where

β =
2k−1+

√
4k2 −8k+1
2

, ε =
2k−1−

√
4k2 −8k+1
2

,

α1 =
2k2 −3k+ k

√
4k2 −8k+1

2
√

4k2 −8k+1
, α2 =

−2k2 +3k+ k
√

4k2 −8k+1
2
√

4k2 −8k+1
,

α3 =
2k2 − k+ k

√
4k2 −8k+1

2
√

4k2 −8k+1
, α4 =

−2k2 + k+ k
√

4k2 −8k+1
2
√

4k2 −8k+1
.
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4.1 Average degree of model F(t)

Lemma 4. The average degree of model F(t) is bounded by

2 ≤ ⟨d⟩= 2Et

Nt
≈ 2α3

α1
≤ 2.6056. (28)

The sparsity of model F(t) is valid since the average degree value is small.

4.2 Clustering coefficient of model F(t)

For model F(t) constructed with the aid of a cycle of length k > 3, it is clear that the clustering coefficient Cv,∀v ∈
F(t) is identically zero since there is no triangle existing between v and its neighbors.

Lemma 5. The clustering coefficient C of model F(t), k ≥ 4 satisfies

C = 0. (29)

4.3 Diameter of model F(t)

For model F(t) constructed by aid of a cycle of length k ≥ 3, it is obvious that the diameter D(0) of F(t) is given
by

D(0) =

{
k
2 if k is even,⌊ k
2

⌋
if k is odd.

Lemma 6. For t ≥ 1, the exact solution of diameter D(t) of model F(t) is

D(t) =

{
2D(t −1)+ (k−1)t×k

2 if k is even,

D(t −1)+ (k−1)t×k
2 if k is odd.

(30)

4.4 The number of spanning trees of model F(t)

For t = T , the structure of model F(T ) can be decomposed to NT−1 cycles of length (k−1)0 × k, NT−2 cycles of
length (k−1)× k, ..., N0 cycles of length (k−1)t−1 × k, and only one cycle of length (k−1)t × k, the number of
spanning trees of F(t) is estimated as follows:

Theorem 4. The number of spanning trees of F(t) model is given by

τ(F(t)) = (k−1)t+ζ × k1+η , (31)

where ζ = α1
(β−1)2 β t + α2

(ε−1)2 ε t − k
k−2 and η = α1

β−1 β t + α2
ε−1 ε t .

Proof: Similar to the proof of Theorem 2.
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4.5 The entropy of spanning trees of model F(t)

Theorem 5. The entropy of spanning trees of model F(t) is given by

ξ (F(t)) = lim
t→∞

lnτ(F(t))
Nt

≈ ln(k−1)

(β −1)2 +
k

β −1
. (32)

Proof: Similar to the proof of Theorem 3.

5 Conclusion

The examination of complex networks is inspired by empirical studies of many phenomena. It is relevant to many
applications as stated above and nowadays it is used to investigate the spread of epidemics such as
COVID-19 [25]. In this paper, we suggested a class of complex networks F(t) constructed in an iterative manner
and discussed some of their topological properties. We found the analytic solutions for the entropy and number of
spanning trees of F(t).
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